Cho hàm số Tìm điểm M thuộc (C) sao cho tiếp tuyến tại M và hai trục tọa độ tạo thành tam giác cân.
A. hoặc
B. M(2;3) hoặc M(0;1)
C. hoặc
D. M(2;3) hoặc
TXĐ:
Ta có:
Gọi là điểm thuộc đồ thị hàm số (C). Khi đó phương trình tiếp tuyến của đồ thị hàm số (C) tại điểm M là:
Gọi là giao điểm của và trục là giao điểm của và trục Oy.
Theo đề bài ta có tiếp tuyến tại M và hai trục tọa độ tạo thành tam giác cân
⇒ tam giác OAB cân tại O
Khi đó ta có hai điểm M là: M(0;1) và M(2;3)
Đáp án cần chọn là: B
Cho hàm số có đồ thị hàm số (C). Có bao nhiêu điểm A thuộc (C) sao cho tiếp tuyến của (C) tại A cắt (C) tại hai điểm phân biệt thỏa mãn ?
Viết phương trình tiếp tuyến của đồ thị hàm số tại điểm có hoành độ bằng 0.
Cho hàm số: . Tìm điểm nằm trên đồ thị hàm số sao cho tiếp tuyến tại điểm đó có hệ số góc nhỏ nhất.
Cho hàm số Tồn tại hai tiếp tuyến của (C) phân biệt và có cùng hệ số góc k, đồng thời đường thẳng đi qua các tiếp điểm của hai tiếp tuyến đó cắt các trục Ox,Oy tương ứng tại A và B sao cho OA=2017.OB. Hỏi có bao nhiêu giá trị của k thỏa mãn yêu cầu bài toán?
Cho hàm số có đồ thị là(C), Mlà điểm thuộc (C) sao cho tiếp tuyến của (C) tại Mcắt hai đường tiệm cận của (C) tại hai điểm A, B thỏa mãn . Gọi S là tổng các hoành độ của tất cả các điểm Mthỏa mãn bài toán. Tìm giá trị của S.
Cho hàm số , có đồ thị (C) với m là tham số thực. Gọi A là điểm thuộc đồ thị (C) có hoành độ bằng 1. Tìm m để tiếp tuyến Δ với đồ thị (C) tại A cắt đường tròn tạo thành một dây cung có độ dài nhỏ nhất
Giả sử tiếp tuyến của đồ thị hàm số song song với đường thẳng có dạng . Khi đó tổng là: