A.
B.
C.
D.
Đáp án đúng là: A
Ta có: f '(x) = (x3 + 3x)' = 3x2 + 3
f '(1) = 3.12 + 3 = 6
Cho hàm số y = f (x) có đồ thị (C) và điểm M0 (x0; y0) ∈ (C). Tiếp tuyến của đồ thị (C) tại điểm M0 có dạng y = f '(x0) (x − x0) + y0
Vậy nên phương trình đường thẳng (d) là tiếp tuyến của (C) tại điểm M (1; 4) là:
y = 6. (x − 1) + 4
Þ y = 6x − 2
Phương trình hoành độ giao điểm của (C) và (d) là:
x3 + 3x = 6x – 2 Û x3 – 3x + 2 = 0
Û (x3 – x) – (2x – 2) = 0
Û x(x – 1)(x + 1) – 2(x – 1) = 0
Û (x – 1)(x2 + x – 2) = 0
Û (x – 1)2.(x + 2) = 0
Û
Phương trình hoành độ giao điểm của (C) và trục hoành là:
x3 + 3x = 0 Û
Û x = 0
Phương trình hoành độ giao điểm của (d) và trục hoành là:
6x – 2 = 0 Û x =
Do đó diện tích hình phẳng giới hạn bởi (C), (d) và trục hoành là:
S = +
S = +
Vậy ta chọn phương án A.
Trong không gian Oxyz, cho mặt cầu (S) có tâm I(1; −2; 3) và cắt mặt phẳng Oxy tạo ra đường tròn giao tuyến có chu vi bằng 8π. Phương trình của mặt cầu (S) là
Khi tìm nguyên hàm , bằng cách đặt t = ta được nguyên hàm nào sau đây?
Cho hình phẳng (H) giới hạn bởi đồ thị hàm số y = , trục hoành và các đường thẳng x = 0, x = . Khối tròn xoay tạo thành khi quay (H) quanh trục hoành có thể tích bằng
Trong không gian Oxyz, cho tứ diện ABCD với A(3; −1; 1), B(−1; 0; 0), C(0; 1; 0), D(0; 0; 2). Chiều cao AH của tứ diện ABCD bằng:
Trong không gian Oxyz, mặt phẳng nào sau đây đi qua gốc tọa độ và vuông góc với đường thẳng = =
Trong không gian Oxyz, cho hai điểm M (2; 1; 0) và N (4; 3; 2). Gọi (P) là mặt phẳng trung trực của MN, phương trình của mặt phẳng (P) là
Trong không gian Oxyz, cho đường thẳng d: = = . Mặt phẳng (P) vuông góc với đường thẳng d, có vectơ pháp tuyến là
Hàm số F (x) = x + (với x ≠ 0) là một nguyên hàm của hàm số nào sau đây?
Trên tập số phức, cho số phức z có biểu diễn hình học là điểm M ở hình vẽ sau.
Khẳng định nào sau đây đúng?