Một ban đại diện gồm 5 người được thành lập từ 10 người có tên sau đây: Lan, Mai, Minh, Thu, Miên, An, Hà, Thanh, Mơ, Nga. Tính xác xuất để ít nhất 3 người trong ban đại diện có tên bắt đầu bằng chữ M.
A. 5/252
B. 1/24
C. 5/21
D. 11/42
Chọn ra 5 người trong tổng số 10 người có = 252.
Ta có số phần tử của không gian mẫu là n(Ω) = 252.
Gọi A là biến cố: “Ít nhất 3 người trong ban đại diện có tên bắt đầu bằng chữ M”.
Ta xét hai trường hợp sau:
• Trường hợp 1: Có đúng 3 người tên bắt đầu bằng chữ M.
Chọn 3 người có tên bắt đầu bằng chữ M: có cách chọn.
Chọn 2 người trong 6 người còn lại: có cách chọn.
Suy ra có cách chọn.
• Trường hợp 2: Có đúng 4 người tên bắt đầu bằng chữ M.
Chọn 4 người có tên bắt đầu bằng chữ M: có cách chọn.
Chọn 1 người trong 6 người còn lại: có cách chọn.
Suy ra có cách chọn.
Do đó số kết quả thuận lợi cho biến cố A là:
n(A) = = 66.
Vậy xác suất của biến cố A là:
P(A) =
Ta chọn phương án D.
Tung một đồng xu cân đối và đồng chất 3 lần liên tiếp. Xác suất của biến cố A: “Trong 3 lần tung có ít nhất 1 lần xuất hiện mặt sấp” là:
Từ các chữ số {1; 2; 3; 4; 5; 6}, lập một số bất kì gồm 3 chữ số. Xác suất để số nhận được chia hết cho 6 là:
Tung xúc xắc 5 lần sẽ có không gian mẫu gồm bao nhiêu cách xuất hiện mặt của xúc xắc?
Chọn ngẫu nhiên 2 học sinh từ một tổ có 9 học sinh. Biết rằng xác suất chọn được 2 học sinh nữ bằng 5/18 , hỏi tổ có bao nhiêu học sinh nữ?
Trong một chiếc hộp đựng 6 viên bi đỏ, 8 viên bi xanh, 10 viên bi trắng. Lấy ngẫu nhiên 4 viên bi. Số kết quả thuận lợi cho biến cố B: “4 viên bi lấy ra có ít nhất một viên bi màu xanh” là:
Một hộp đựng 9 viên bi có kích thước và khối lượng như nhau, trong đó có 4 viên bi đỏ và 5 viên bi xanh. Lấy ngẫu nhiên từ hộp 3 viên bi. Xác suất để 3 viên bi lấy ra có ít nhất 2 viên bi màu xanh là:
Một người bỏ ngẫu nhiên 4 lá thư vào 4 bì thư đã được ghi sẵn địa chỉ cần gửi. Xác xuất để có ít nhất 1 lá thư bỏ đúng phong bì của nó là:
Đội tuyển của một lớp có 8 học sinh nam và 4 học sinh nữ. Trong buổi dự lễ trao thưởng, các học sinh được xếp thành 1 hàng ngang. Xác suất để xếp cho 2 học sinh nữ không đứng cạnh nhau là:
Hai người ngang tài ngang sức tranh chức vô địch của một cuộc thi cờ vua. Người dành chiến thắng là người đầu tiên thắng được 5 ván cờ. Tại thời điểm người chơi thứ nhất đã thắng 4 ván và người chơi thứ hai mới thắng 2 ván (không có ván nào hòa). Xác suất để người chơi thứ nhất dành chiến thắng là:
Một tổ có 7 học sinh nam và 3 học sinh nữ. Cô giáo chọn ngẫu nhiên 2 bạn trong tổ lên kiểm tra bài cũ. Xác suất để 2 bạn chọn lên là 2 bạn nữ là:
Xúc xắc có 6 mặt đánh số chấm từ 1 đến 6 chấm. Không gian mẫu của 1 lần tung xúc xắc là:
Gieo một con xúc xắc cân đối và đồng chất. Giả sử xúc xắc xuất hiện mặt b chấm. Xác suất để phương trình x2 + bx + 2 = 0 có hai nghiệm phân biệt là:
Trong hộp có 3 viên bi xanh và 5 viên bi đỏ. Lấy ngẫu nhiên trong hộp 3 viên bi. Xác suất của biến cố A: “Lấy ra được 3 viên bi màu đỏ” là: