Chứng minh rằng với S là diện tích của tam giác có độ dài hai cạnh là a,b ?
Xét tam giác ABC có BC = a, AC = b
Kẻ AH ⊥ BC thì AH và AC lần lượt là đường xiên.
Đường vuông góc kẻ từ A ở ngoài đường thẳng BC đến đường thẳng đó nên đường AH là đường ngắn nhất hay AH ≤ AC.
Khi đó ta có:
Mặt khác ta có:
+ 4ab = ( a + b )2 - ( a - b )2 ≤ ( a + b )2 ( 1 )
+ 2( a2 + b2 ) = ( a + b )2 + ( a - b )2 ≥ ( a + b )2 ( 2 )
Từ ( 1 ) và ( 2 ), ta có: 4ab ≤ 2( a2 + b2 ) ⇒
Hay (đpcm)
Cho tam giác nhọn ABC, các đường cao AA', BB', CC' cắt nhau tại H. Chứng minh rằng:
Trong các khẳng định sau, khẳng định nào đúng, khẳng định nào sai ?
A. Hình vuông là đa giác đều.
B. Tổng các góc của đa giác lồi 8 cạnh là 10800.
C. Hình thoi là đa giác đều.
D. Số đo góc của hình bát giác đều là 135,50.
Trung tuyến AD và BE của Δ ABC cắt nhau tại G. Chứng minh rằng:
SDEG = SCEG = SCED = SABG = SABE = SABC.