Phần không tô đậm (không kể đường thẳng d) trong hình vẽ sau biểu diễn tập nghiệm của bất phương trình nào?
Hướng dẫn giải
Đáp án đúng là: D
Ta thấy đường thẳng đi qua 2 điểm \(\left( {\frac{3}{2};0} \right)\) và (0; –3) nên có phương trình 2x – y – 3 = 0.
Xét cặp số (0; 0) ta có 2.0 – 0 – 3 = –3 < 0.
Quan sát hình vẽ ta thấy điểm (0; 0) không nằm trong miền tô đậm nên là nghiệm của bất phương trình.
Do đó bất phương trình là 2x – y – 3 < 0 hay 2x – y < 3.
Vậy phần không tô đậm (không kể đường thẳng d) ở hình trên biểu diễn miền nghiệm của bất phương trình 2x – y < 3.
Miền nghiệm của bất phương trình 3x – 2y < –6 được biểu diễn bởi miền không tô đậm trong hình vẽ nào dưới đây:
Cho hệ bất phương trình \(\left\{ \begin{array}{l}3x + 2y < 1\,\,\,\,\,\,\,\,\left( 1 \right)\\x + \frac{2}{3}y < 1\,\,\,\,\left( 2 \right)\end{array} \right..\) Gọi S1 là miền nghiệm của bất phương trình (1), S2 là miền nghiệm của bất phương trình (2).
Cho các phát biểu sau:
(I) Miền nghiệm của hệ bất phương trình là S1;
(II) Miền nghiệm của hệ bất phương trình là S2;
(III) Hai bất phương trình của hệ có cùng miền nghiệm.
Số phát biểu đúng là:
Cho hệ bất phương trình \(\left\{ \begin{array}{l}x - 2y < 0\\m{x^2} + 3y > 0\\2x - \left( {{m^2} - m} \right){y^2} \le 0\end{array} \right.\) (với m là tham số). Giá trị m để hệ bất phương trình đó là hệ bất phương trình bậc nhất hai ẩn x và y là:
Cho các đường thẳng d1: 3x – 4y + 12 = 0, d2: x + y – 5 = 0 và d3: x + 1 = 0.
Miền không gạch chéo (kể cả bờ d1, d2, d3) trong hình vẽ bên dưới là miền nghiệm của hệ bất phương trình nào trong các hệ bất phương trình dưới đây?
Một người thợ mộc tốn 6 giờ để làm một cái bàn và 4 giờ để làm một cái ghế. Gọi x, y lần lượt là số bàn và số ghế mà người thợ mộc sản xuất trong một tuần. Viết bất phương trình biểu thị mối liên hệ giữa x và y biết trong một tuần người thợ mộc có thể làm tối đa 50 giờ.