Cho hình chóp S.ABCD có đáy ABCD là hình vuông với cạnh AB = a√2, SA vuông góc với mặt phẳng đáy và SA = 3a.
Chứng minh CD ^ (SAD).
Hướng dẫn giải
Ta có SA ^ (ABCD) mà CD Ì (ABCD) Þ SA ^ CD (1)
ABCD là hình vuông Þ CD ^ AD (2)
Từ (1) và (2) Þ CD ^ (SAD)
Cho hình chóp S.ABC có đáy ABC là tam giác đều cạnh a, SA vuông góc với mặt phẳng (ABC) và SA = a. Góc giữa đường thẳng SC và mặt phẳng (ABC) bằng:
Đường thẳng y = ax + b tiếp xúc với đồ thị hàm số y = x3 – 3x – 1 tại điểm có hoành độ bằng 2, giá trị của a + b bằng:
\mathop {\lim }\limits_{x \to + \infty } \left( {\sqrt {4{x^2} - 4x + 7} - 2x} \right) bằng:
Phương trình tiếp tuyến của đồ thị hàm số y = x4 – 3x2 + 1 tại điểm M(1;−1) là:
\mathop {\lim }\limits_{x \to 2} \left( { - 3{x^2} + 6x + 1} \right) bằng:
Cho hình chóp S.ABCD có đáy ABCD là hình bình hành tâm O và có SA = SC, SB = SD. Trong các khẳng định sau, khẳng định nào đúng?