Đường tròn có tâm I (1; 2), bán kính R = 2 có phương trình là:
Hướng dẫn giải
Đáp án đúng là: A
Đường tròn có tâm I (1; 2), bán kính R = 2 có phương trình là:
(x – 1)2 + (y – 2)2 = 4
⇔ x2 + y2 – 2x – 4y + 1 = 0
Viết phương trình tiếp tuyến của đường tròn \[\left( C \right):{x^2} + {y^2} + 4x + 4y - 17 = 0\], biết tiếp tuyến vuông góc đường thẳng d: 3x – 4y – 2018 = 0.
Viết phương trình tiếp tuyến của đường tròn (C): (x – 3)2 + (y + 1)2 = 5, biết tiếp tuyến song song với đường thẳng d: 2x + y + 7 = 0.
Cho phương trình x2 + y2 – 2ax – 2by + c = 0. Điều kiện của a, b, c để phương trình đã cho là phương trình đường tròn:
Đường tròn (C) đi qua ba điểm A (– 1; – 2), B(0; 1) và C(1; 2) có phương trình là:
Cho đường tròn \[\left( C \right):{x^2} + {\left( {y + 4} \right)^2} = 4\]có tọa độ tâm I(a; b) và bán kính R = c. Nhận xét nào sau đây đúng về a, b và c:
Đường tròn (C) có tâm I (– 2; 3) và đi qua M (2; – 3) có phương trình là:
Cho đường tròn (C): (x – 1)2 + (y + 2)2 = 2. Viết phương trình tiếp tuyến d của (C) biết đường d song song với đường thẳng d’: x + y + 3 = 0.
Phương trình tiếp tuyến d của đường tròn (C): x2 + y2 – 3x – y = 0 tại điểm N(1; – 1) là:
Đường tròn (C): x2 + y2 – 8x + 2y + 6 = 0 có tâm I, bán kính R lần lượt là:
Đường tròn có tâm trùng với gốc tọa độ, bán kính R = 1 có phương trình là:
Đường tròn đường kính AB với A (3; – 1), B (1; – 5) có phương trình là: