Tính góc tạo bởi giữa hai đường thẳng:
\[{d_1}:2x + 2\sqrt 3 y + 4 = 0\]và \({d_2}\): y – 4 = 0
Hướng dẫn giải
Đáp án đúng là: A
Ta có:
\[\left\{ \begin{array}{l}{d_1}:2x + 2\sqrt 3 y + 4 = 0 \Rightarrow {{\vec n}_1} = \left( {1;\sqrt 3 } \right)\\{d_2}:y - 4 = 0 \Rightarrow {{\vec n}_2} = \left( {0;1} \right)\end{array} \right.\]với \({\vec n_1}\); \({\vec n_2}\) lần lượt là vectơ pháp tuyến của đường thẳng \({d_1}\); \({d_2}\).
Áp dụng công thức góc giữa hai đường thẳng ta có:
\(\cos \varphi = \frac{{\left| {\sqrt 3 } \right|}}{{\sqrt {1 + 3} .\sqrt {0 + 1} }} = \frac{{\sqrt 3 }}{2} \Rightarrow \varphi = {30^ \circ }.\)
Tìm giá trị âm của m để góc tạo bởi giữa hai đường thẳng \[{d_1}\]: 7x – 3y + 2 = 0 và \[{d_2}\]: 2x + 5my +1 = 0 bằng 45°.
Trong mặt phẳng với hệ tọa độ Oxy, cho tam giác ABC có A(3; -4); B(1; 5) và C(3; 1). Tính diện tích tam giác ABC.
Xét vị trí tương đối của hai đường thẳng:
\[{d_1}\]: x – 2y + 2 = 0 và \[{d_2}\]: – 3x + 6y – 10 = 0
Tìm m để hai đường thẳng d1 và d2 vuông góc với nhau:
\[{d_1}:\left\{ \begin{array}{l}x = - 1 + mt\\y = - 2 - 2t\end{array} \right.\] và \[{d_2}:\left\{ \begin{array}{l}x = 2 - 2t'\\y = - 8 + \left( {4 + m} \right)t'\end{array} \right.\].
Trong mặt phẳng với hệ tọa độ Oxy, cho điểm \(M\left( {{x_0};{y_0}} \right)\) và đường thẳng \(\Delta \): ax + by + c = 0. Khoảng cách từ điểm M đến \(\Delta \) được tính bằng công thức:
Trong mặt phẳng với hệ tọa độ Oxy, cho tam giác ABC có A(1; 2); B(0; 3) và C(4; 0). Chiều cao của tam giác kẻ từ đỉnh A bằng:
Xét vị trí tương đối của hai đường thẳng:
\[{d_1}\]: 3x – 2y – 3 = 0 và \[{d_2}\]: 6x – 2y – 8 = 0
Tính góc tạo bởi giữa hai đường thẳng: \[{d_1}\]: 2x – y – 3 = 0 và \[{d_2}\]: x – 3y + 8 = 0
Tính góc tạo bởi giữa hai đường thẳng: \[{d_1}:x + \sqrt 3 y + 6 = 0\] và \({d_2}\): x + 1 = 0
Khoảng cách từ giao điểm của đường thẳng x – 3y + 4 = 0 và 2x + 3y – 1 = 0 đến đường thẳng \[\Delta \]: 3x + y + 3 = 0 bằng: