Hướng dẫn giải
Đáp án đúng là: B
Đường thẳng đi qua hai điểm A(– 3; 2) và B(1; 4) có VTCP là:
\[\overrightarrow {AB} = \left( {1 - ( - 3);4 - 2} \right)\]= (4; 2) = 2(2; 1) hay \[\vec u\left( {2;1} \right)\].
Viết phương trình tiếp tuyến của đường tròn \[\left( C \right):{x^2} + {y^2} + 4x + 4y - 17 = 0\],
biết tiếp tuyến vuông góc đường thẳng d: 3x – 4y – 2018 = 0.
Xét vị trí tương đối của hai đường thẳng:
\[{d_1}\]: 3x – 2y – 3 = 0 và \[{d_2}\]: 6x – 2y – 8 = 0
Cho hai vectơ \[\overrightarrow u = \left( {2a - 1; - 3} \right)\] và \[\overrightarrow v = \left( {3;4b + 1} \right)\]. Tìm các số thực a và b sao cho cặp vectơ đã cho bằng nhau:
Elip \(\left( E \right):4{x^2} + 16{y^2} = 1\) có độ dài trục bé bằng:
Phương trình tiếp tuyến d của đường tròn (C): x2 + y2 – 3x – y = 0 tại điểm N(1; – 1) là:
Đường tròn (C) đi qua ba điểm A (– 1; – 2), B(0; 1) và C(1; 2) có phương trình là:
Trong mặt phẳng với hệ tọa độ Oxy, cho tam giác ABC có A(3; -4); B(1; 5) và C(3; 1). Tính diện tích tam giác ABC.
Elip \[\left( E \right):\frac{{{x^2}}}{{16}} + \frac{{{y^2}}}{4} = 1\] có tiêu cự bằng: