IMG-LOGO

Câu hỏi:

11/07/2024 151

Cho hình thang ABCD(ABCD) . Một đường thẳng song song với hai đáy, cắt các cạnh bên AD và BC theo thứ tự ở M và N. Chứng minh rằng:AMAD+CNCB=1

Trả lời:

verified Giải bởi Vietjack

Áp dụng định lí Ta-lét vào hai tam giác ACD và ACB ta có MICD,INAB ta được

 AMAD=AIAC(3); CNCB=CICA  (4).

Cộng theo vế các đẳng thức (3) và (4), thu được:AMAD+CNCB=CI+AICA=CACA=1

Media VietJack

Câu trả lời này có hữu ích không?

0

CÂU HỎI HOT CÙNG CHỦ ĐỀ

Câu 1:

Cho hình thang ABCD (ABCD)  . Một đường thẳng song song với hai đáy, cắt các cạnh bên AD và BC theo thứ tự ở M và N.Chứng minh rằng:AMMD=BNNC

Xem đáp án » 15/10/2022 192

Câu 2:

Cho hình bình hành ABCD có M,N lần lượt là trung điểm của AB và CD. Gọi P,Q thứ tự là giao điểm của AN và CM với đường chéo BD. Chứng minh rằng:DP=PQ=QB

Xem đáp án » 15/10/2022 95

Câu hỏi mới nhất

Xem thêm »
Xem thêm »