IMG-LOGO

Câu hỏi:

08/07/2024 96

Cho hình bình hành ABCD có M,N lần lượt là trung điểm của AB và CD. Gọi P,Q thứ tự là giao điểm của AN và CM với đường chéo BD. Chứng minh rằng:DP=PQ=QB

Trả lời:

verified Giải bởi Vietjack

Media VietJack

Áp dụng định nghĩa và giả thiết vào hình bình hành ,
ta được:

AM=NC,AMNC.

Tứ giác AMCN  có hai cạnh đối song song và bằng nhau nên
nó là hình bình hành, do đó MCAN , suy ra

MQAP,PNQC.

Áp dụng định lí Ta-lét vào hai tam giác APB  DQC  MQAP,PNQC , ta được:

 BQQP=BMMA=1BQ=QP(1).

DPPQ=DNNC=1DP=PQ (2)

Từ (1) và (2) ta có:DP=PQ=QB .

Câu trả lời này có hữu ích không?

0

CÂU HỎI HOT CÙNG CHỦ ĐỀ

Câu 1:

Cho hình thang ABCD (ABCD)  . Một đường thẳng song song với hai đáy, cắt các cạnh bên AD và BC theo thứ tự ở M và N.Chứng minh rằng:AMMD=BNNC

Xem đáp án » 15/10/2022 193

Câu 2:

Cho hình thang ABCD(ABCD) . Một đường thẳng song song với hai đáy, cắt các cạnh bên AD và BC theo thứ tự ở M và N. Chứng minh rằng:AMAD+CNCB=1

Xem đáp án » 15/10/2022 151

Câu hỏi mới nhất

Xem thêm »
Xem thêm »