Cho tam thức bậc hai f(x) = ax2 + bx + c (a ≠ 0). Khẳng định nào sau đây đúng?
A. Nếu ∆ > 0 thì f(x) luôn cùng dấu với hệ số a, ∀x ∈ ℝ;
B. Nếu ∆ < 0 thì f(x) luôn trái dấu với hệ số a, ∀x ∈ ℝ;
C. Nếu ∆ = 0 thì f(x) luôn cùng dấu với hệ số a, ∀x ∈ ℝ \ ;
Hướng dẫn giải
Đáp án đúng là: C
Cho tam thức bậc hai f(x) = ax2 + bx + c (a ≠ 0), ta có:
⦁ Nếu ∆ < 0 thì f(x) cùng dấu với a với mọi giá trị x.
Do đó phương án B, D đều sai.
⦁ Nếu ∆ = 0 và là nghiệm kép của f(x) thì f(x) cùng dấu với a với mọi x ≠ x0.
Do đó phương án C đúng.
⦁ Nếu ∆ > 0 và x1, x2 là hai nghiệm của f(x) (x1 < x2) thì f(x) trái dấu với a với mọi x trong khoảng (x1; x2); f(x) cùng dấu với a với mọi x thuộc hai khoảng (–∞; x1); (x2; +∞).
Do đó phương án A sai.
Vậy ta chọn phương án C.
Cho f(x) = ax2 + bx + c (a ≠ 0) và ∆ = b2 – 4ac. Khi f(x) luôn cùng dấu với hệ số a, với mọi x ∈ ℝ thì:
Biệt thức và biệt thức thu gọn của tam thức bậc hai f(x) = –x2 – 4x – 6 lần lượt là:
Cho bất phương trình f(x) = ax2 + bx + c ≤ 0, biết a > 0 và f(x) có hai nghiệm phân biệt x1; x2 sao cho x1 < x2. Khi đó tập nghiệm của bất phương trình là:
Giá trị của m để (m – 1)x2 – 2(m + 1)x + m + 3 ≤ 0 là bất phương trình bậc hai một ẩn là:
Cho bất phương trình f(x) = ax2 + bx + c > 0, biết a < 0 và f(x) có nghiệm kép x0. Khi đó tập nghiệm của bất phương trình là: