Cho 3 hộp, mỗi hộp đựng 5 cái thẻ được đánh số từ 1 đến 5. Rút ngẫu nhiên từ mỗi hộp một tấm thẻ. Biến cố nào sau đây là biến cố chắc chắn?
A. X: “Tổng các số ghi trên ba tấm thẻ rút ra đều lớn hơn hoặc bằng 3”;
B. Y: “Tổng các số ghi trên ba tấm thẻ rút ra không nhỏ hơn 4”;
C. Z: “Tổng các số ghi trên ba tấm thẻ rút ra bằng 8”;
Hướng dẫn giải
Đáp án đúng là: A
⦁ Ta thấy mỗi thẻ đều được đánh số từ 1 đến 5, đây là các số đều lớn hơn hoặc bằng 1.
Do đó khi tính tổng các số ghi trên cả ba tấm thẻ, ta sẽ được tổng các số đó đều lớn hơn hoặc bằng 3.
Vì vậy biến cố X là biến cố chắc chắn.
⦁ Ta có thể rút được 3 thẻ đều được ghi số 1.
Khi đó tổng các số ghi trên cả ba tấm thẻ là bằng 3 < 4 và 3 ≠ 8.
Do đó biến cố Y và biến cố Z không phải là biến cố chắc chắn.
⦁ Trong các số từ 1 đến 5, ta thấy số 5 lớn nhất.
Giả sử ba tấm thẻ được rút ra đều được ghi số 5.
Khi đó tổng ba số là 15.
Vì vậy không có 3 thẻ nào có tổng các số ghi trên thẻ cộng lại lớn hơn 15.
Do đó biến cố T là biến cố không thể.
Vậy ta chọn phương án A.
Xét phép thử T: “Tung ba đồng xu đồng chất và cân đối”. Số phần tử của không gian mẫu là:
Xếp ngẫu nhiên 5 người vào một bàn dài có năm chỗ ngồi. Số phần tử của không gian mẫu là:
Gieo liên tiếp một con xúc xắc đồng chất và cân đối hai lần liên tiếp. Xét biến cố M: “Tổng số chấm trên mặt sau hai lần gieo bằng 9”. Tập hợp nào sau đây mô tả biến cố M?
Một hộp đựng 9 thẻ được ghi các số từ 1 đến 9. Rút ngẫu nhiên hai thẻ từ hộp đó. Biến cố nào sau đây là biến cố không thể?
Phép thử: “Gieo một con xúc xắc 6 mặt đồng chất và cân đối”. Xét biến cố A: “Số chấm trên mặt xuất hiện là số chẵn”. Khi đó số kết quả thuận lợi cho biến cố A là:
Xét phép thử: “Tung hai đồng xu đồng chất và cân đối”. Nếu ta kí hiệu S để chỉ “mặt sấp” và kí hiệu N để chỉ “mặt ngửa” là mặt xuất hiện khi tung đồng xu, thì không gian mẫu của phép thử trên là:
Chọn ngẫu nhiên một số có 2 chữ số nhỏ hơn 40. Tập hợp các kết quả thuận lợi cho biến cố: “Số được chọn là số chia hết cho 5” là: