IMG-LOGO

Câu hỏi:

21/07/2024 154

b) Chứng minh tứ giác BDEC nội tiếp đường tròn.

Trả lời:

verified Giải bởi Vietjack

b) Ta có: BAH^  = C^  (góc có cạnh tương ứng vuông góc) mà DAH^=ADE^  (1)

(Vì ADHE  là hình chữ nhật) =>  C^=ADE^ do C^+BDE^=180o  nên tứ giác BDEC  nội tiếp đường tròn.

Lưu ý: Có thể hướng dẫn học sinh một cách sử dụng hệ thức lượng và tam giác đồng dạng như sau:

Tam giác AHB vuông tại H, đường cao AH. Ta có  AH2=AD.AB 

Tam giác AHC vuông tại H, đường cao AE. Ta có   AH2=AE.AC

Ta có  AD.AB=AE.ACADAC=AEAB

Xét tam giác ADE và tam giác ACB có ADAC=AEAB ,BAC^=DAE^=900  (góc chung)

ΔADEΔACBADE^=ACB^   ADE^+EDB^=1800  nên ADE^+ECB^=1800

Tứ giác BDEC có ADE^+ECB^=1800  nên tứ giác BDEC nội tiếp đường tròn. 

Câu trả lời này có hữu ích không?

0

CÂU HỎI HOT CÙNG CHỦ ĐỀ

Câu 1:

Cho nữa đường tròn tâm O đường kính AB , kẻ tiếp tuyến Bx và lấy hai điểm C và D thuộc nửa đường tròn. Các tia  AC và AD  cắt Bx lần lượt ở E, F (  F ở giữa B và E)

1. Chứng minh:ABD^=DFB^ .

Xem đáp án » 04/01/2023 280

Câu 2:

Cho tứ giác ABCD nội tiếp (O), M là điểm chính giữa của cung AB. Nối M với D, M với C cắt AB lần lượt ở E và P. Chứng minh tứ giác PEDC nội tiếp được đường tròn.

Xem đáp án » 04/01/2023 237

Câu 3:

b, Chứng minh MI2 = MH.MK;

Xem đáp án » 04/01/2023 195

Câu 4:

2. Chứng minh rằng CEFD là tứ giác nội tiếp.

Xem đáp án » 04/01/2023 191

Câu 5:

Cho nửa đường tròn tâm O đường kính AB=2R và tia tiếp tuyến Ax cùng phía với nửa đường tròn đối với AB. Từ điểm M trên Ax kẻ tiếp tuyến thứ hai  MC với nửa đường tròn (C là tiếp điểm).AC cắt OM tại E  ; MB cắt nửa đường tròn (O)   tại D ( D khác B ).

a) Chứng minh: AMCO  AMDE  là các tứ giác nội tiếp đường tròn.

Xem đáp án » 04/01/2023 174

Câu 6:

Cho nửa đường tròn đường kính BC=2R. Từ điểm A trên nửa đường tròn vẽ AHBC . Nửa đường tròn đường kính BH,  CH lần lượt có tâm O1 ; O2  cắt AB  và CA thứ tự tại D và E.

a) Chứng minh tứ giác ADHE  là hình chữ nhật, từ đó tính DE biết  R=25 và BH=10

Xem đáp án » 04/01/2023 168

Câu 7:

Từ bài toán quen thuộc cho (O,R). Trên nửa mặt phẳng bờ AB kẻ tiếp tuyến Ax và By với (O), lấy N thuộc (O), kẻ tiếp tuyến với (O) tại N cắt Ax tại C, cắt By tại D. Gọi I và K lần lượt là giao điểm của AN và CO, MN và OD. Chứng minh NIOK là hình chữ nhật.

Ta có bài toán sau:

Cho nửa đường tròn tâm O đường kính AB. Lấy điểm M thuộc đoạn thẳng QA, điểm N thuộc nửa đường tròn (O). Từ QA   B vẽ các tiếp tuyến Ax và By. Đường thẳng qua N và vuông góc với NM cắt Ax, By thứ tự tại C và D.

a) Chứng minh ACNM  BDNM  là các tứ giác nội tiếp đường tròn.

Từ bài toán quen thuộc cho (O,R). Trên nửa mặt phẳng bờ AB kẻ tiếp tuyến Ax và By với (O) (ảnh 1)

Xem đáp án » 04/01/2023 155

Câu 8:

Cho tam giác ABC, 2 đường cao BB’, CC’. Chứng minh tứ   giác BCB’C’ nội tiếp.

Xem đáp án » 04/01/2023 140

Câu 9:

Ta có : Tứ giác ABCD nội tiếp (O) Ta phải chứng minh:  AC. BD = AB. DC + AD. BC

Xem đáp án » 04/01/2023 128

Câu 10:

b) Chứng minh  ΔANB đồng dạng với ΔCMD  từ đó suy ra IMKN  là tứ giác nội tiếp.

Xem đáp án » 04/01/2023 115

Câu 11:

b) Chứng minh MBCD là tứ giác nội tiếp (xem cách giải Bài 3)

Xem đáp án » 04/01/2023 113

Câu hỏi mới nhất

Xem thêm »
Xem thêm »