Cho hình chữ nhật ABCD . Gọi E, F, G, H lần lượt là trung điểm của AB, BC, CD, DA. Chứng minh rằng tứ giác EFGH là hình thoi.
Vì E, F lần lượt là trung điểm của AB, BC nên:
EFlà đường trung bình của . Do đó:
Vì G, H lần lượt là trung điểm của CD, DA nên:
GH là đường trung bình của . Do đó:
Từ (1) và (2) suy ra:
Vậy tứ giác EFGH là hình bình hành
Xét và có:
EA = EB (Giả thiết)
AH = BF (Vì AD = BC)
Suy ra:
=> HE = FE (**)
Từ (*) và (**) ta được tứ giác là hình thoi (đpcm).
Cho tam giác ABC cân tại A . Đường thẳng qua B song song với AC cắt đường thẳng qua C song song với AB tại D. Chứng minh rằng tứ giác ABDC là hình thoi.
Cho tứ giác ABCD có AD = BC. Gọi E, F, M, N lần lượt là trung điểm của AB, DC, DB, AC. Chứng minh tứ giác EFMN là hình thoi.
Cho hình bình hành ABCD có AB = 2.AD. Gọi M, N lần lượt là trung điểm cạnh CD, AB. Chứng minh tứ giác ANMD là hình thoi.
Cho hình thoi ABCD . Trên các cạnh BC và CD lần lượt lấy hai điểm E và F sao cho BE = DF. Gọi G, H thứ tự là giao điểm của AE, AF với đường chéo BD. Chứng minh rằng tứ giác AGCH là hình thoi.