Thứ năm, 19/12/2024
IMG-LOGO

Câu hỏi:

20/07/2024 126

Cho ABC có 3 góc nhọn, trực tâm là H và nội tiếp đường tròn (O). Vẽ đường kính AK.
Vẽ OM vuông góc với BC (M thuộc BC). Chứng minh H, M, K thẳng hàng và AH = 2.OM.

Trả lời:

verified Giải bởi Vietjack

Media VietJack

OM vuông góc với BC => M trung điểm của BC

(định lý đường kính và dây cung) => M là trung điểm của HK (vì BHCK là hình bình hành) => đpcm tam giác AHK có OM là đường trung bình => AH = 2.OM

Câu trả lời này có hữu ích không?

0

CÂU HỎI HOT CÙNG CHỦ ĐỀ

Câu 1:

Cho hình bình hành ABCD có đỉnh D nằm trên đường tròn đường kính AB = 2R. Hạ BN và DM cùng vuông góc với đường chéo AC.Chứng minh tứ giác: CBMD nội tiếp được

Xem đáp án » 04/01/2023 304

Câu 2:

Cho đường tròn (O), đường kính AB cố định, điểm I nằm giữa A và O sao cho AI = AO. Kẻ dây MN vuông góc với AB tại I. Gọi C là điểm tùy ý thuộc cung lớn MN sao cho C không trùng với M, N và. B Nối AC cắt MN tại E.

Chứng minh ∆AME  ∆ACM và AM2 = AE.AC

Xem đáp án » 04/01/2023 295

Câu 3:

Cho đường tròn (O), đường kính AB, d1, d2 là các các đường thẳng lần lượt qua A, B và cùng vuông góc với đường thẳng AB. Lấy M, N là các điểm lần lượt thuộc d1, d2 sao cho MON^  = 900.

Chứng minh AM. BN = AB24

Xem đáp án » 04/01/2023 288

Câu 4:

Cho nửa đường tròn đường kính AB = 2R. Từ A và B kẻ hai tiếp tuyến Ax, By. Qua điểm M thuộc nửa đường tròn kẻ tiếp tuyến thứ ba cắt các tiếp tuyến Ax, By lần lượt ở C và D. Các đường thẳng AD và BC cắt nhau tại N.

Chứng minh AC + BD = CD

Xem đáp án » 04/01/2023 249

Câu 5:

Trên đoạn thẳng AB cho điểm C nằm giữa A và B Trên cùng một nửa mặt phẳng có bờ là AB kẻ hai tia Ax và By cùng vuông góc với AB Trên tia Ax lấy điểm I, tia vuông góc với CI tại C cắt tia By tại K. Đường tròn đường kính IC cắt IK tại P ( P khác I)

Chứng minh tứ giác CPKB nội tiếp một đường tròn, chỉ rõ đường tròn này.

Xem đáp án » 04/01/2023 210

Câu 6:

Từ một điểm A nằm ngoài đường tròn (O;R) ta vẽ hai tiếp tuyến AB, AC với đường tròn (B, C là tiếp điểm). Trên cung nhỏ BC lấy một điểm M, vẽ MI AB, MK AC (I AB,K AC)

Xác định vị trí của điểm M trên cung nhỏ BC để tích MI.MK.MP đạt giá trị lớn nhất.

Xem đáp án » 04/01/2023 206

Câu 7:

Cho hình bình hành ABCD có đỉnh D nằm trên đường tròn đường kính AB = 2R. Hạ BN và DM cùng vuông góc với đường chéo AC. Chứng minh rằng: DBDC = DN.AC

Xem đáp án » 04/01/2023 193

Câu 8:

Trên đoạn thẳng AB cho điểm C nằm giữa A và B Trên cùng một nửa mặt phẳng có bờ là AB kẻ hai tia Ax và By cùng vuông góc với AB Trên tia Ax lấy điểm I, tia vuông góc với CI tại C cắt tia By tại K. Đường tròn đường kính IC cắt IK tại P ( P khác I)

Chứng minh CIP^=PBK^ .

Xem đáp án » 04/01/2023 191

Câu 9:

Cho đường tròn (O), dây AB không đi qua tâm. Trên cung nhỏ AB lấy điểm M (M không trùng với A, B). Kẻ dây MN vuông góc với AB tại H. Kẻ MK vuông góc với AN .

Chứng minh: Bốn điểm A, M, H, K thuộc một đường tròn.

Xem đáp án » 04/01/2023 188

Câu 10:

Cho đường tròn (O), dây AB không đi qua tâm. Trên cung nhỏ AB lấy điểm M (M không trùng với A, B). Kẻ dây MN vuông góc với AB tại H. Kẻ MK vuông góc với AN .

Chứng minh: MN là phân giác của góc BMK

Xem đáp án » 04/01/2023 182

Câu 11:

Cho đường tròn (O) đường kính AB Gọi I là trung điểm của OA Vẽ đường tron tâm I đi qua A, trên (I) lấy P bất kì, AP cắt (O) tại Q. Xác định vị trí của P để tam giác AQB có diện tích lớn nhất.

Xem đáp án » 04/01/2023 179

Câu 12:

Cho (O),dây cung AB. Từ điểm M bất kỳ trên cung AB sao cho MA> MB (M¹A và M¹B), kẻ dây cung MN vuông góc với AB tại H. Gọi MQ là đường cao của tam giác MAN.

C/m:NQ.NA=NH.NM

Xem đáp án » 04/01/2023 177

Câu 13:

Cho (O),dây cung AB. Từ điểm M bất kỳ trên cung AB sao cho MA> MB (M¹A và M¹B), kẻ dây cung MN vuông góc với AB tại H. Gọi MQ là đường cao của tam giác MAN.

C/m 4 điểm A;M;H;Q cùng nằm trên một đường tròn.

Xem đáp án » 04/01/2023 173

Câu 14:

Cho đường tròn (O) đường kính AB Gọi I là trung điểm của OA Vẽ đường tron tâm I đi qua A, trên (I) lấy P bất kì, AP cắt (O) tại Q. Chứng minh IP // OQ.

Xem đáp án » 04/01/2023 168

Câu 15:

Cho đường tròn (O) đường kính AB cố định và đường kính CD thay đổi không trùng với AB Tiếp tuyến tại A của đường tròn (O) cắt các đường thẳng BC và BD lần lượt tại E và F. Gọi P và Q lần lượt là trung điểm của các đoạn thẳng AE và AF.

Xác định vị trí của đường kính CD để tam giác BPQ có diện tích nhỏ nhất.

Xem đáp án » 04/01/2023 157

Câu hỏi mới nhất

Xem thêm »
Xem thêm »