Cho tập A có n phần tử (n ∈ ℕ, n ≥ 2), k là số nguyên thỏa mãn 1 ≤ k ≤ n. Số các chỉnh hợp chập k của n phần tử trên là:
Hướng dẫn giải
Đáp án đúng là: B
Ta kí hiệu \(A_n^k\) là số các chỉnh hợp chập k của n phần tử (1 ≤ k ≤ n).
Ta có: \(A_n^k = n\left( {n - 1} \right)...\left( {n - k + 1} \right)\)
Có bao nhiêu cách xếp 18 thí sinh vào 18 bàn sao cho mỗi bàn chỉ có một thí sinh.
Từ các chữ số 6; 7; 8; 9, có thể lập được bao nhiêu chữ số tự nhiên có 4 chữ số đôi một khác nhau.
Cho ba số 5; 6; 7, có thể lập được bao nhiêu số có ba chữ số sao cho ba chữ số đó khác nhau.
Một lớp học có 45 học sinh. Giáo viên cần chọn ra một bạn làm lớp trưởng và một bạn làm bí thư. Hỏi giáo viên có bao nhiêu cách chọn?