Phương trình nào là phương trình đường tròn có tâm I(–3; 4) và bán kính R = 2?
Hướng dẫn giải
Đáp án đúng là: A
Phương trình đường tròn có dạng: (x – a)2 + (y – b)2 = R2, với tâm I(a; b) và bán kính R.
Khi đó phương trình đường tròn cần tìm là: (x + 3)2 + (y – 4)2 = 22.
⇔ (x + 3)2 + (y – 4)2 = 4 hay (x + 3)2 + (y – 4)2 – 4 = 0.
Vậy ta chọn phương án A.
Tâm của đường tròn (C) có phương trình: (x – 2)2 + (y + 5)2 = 12 là:
Cho phương trình đường tròn (C): x2 + y2 – 2ax – 2by + c = 0. Khi đó bán kính R được tính bởi công thức:
Phương trình x2 + y2 – 2ax – 2by + c = 0 là phương trình đường tròn khi và chỉ khi: