Trong mặt phẳng tọa độ Oxy, cho \(\vec a = \left( {2;1} \right),\,\,\vec b = \left( {3;4} \right),\,\,\vec c = \left( { - 7;2} \right)\). Nếu \(\vec x - 2\vec a = \vec b - 3\vec c\) thì:
Hướng dẫn giải
Đáp án đúng là: D
Ta có \(\vec x - 2\vec a = \vec b - 3\vec c\).
Suy ra \(\vec x = 2\vec a + \vec b - 3\vec c\).
Ta có: \(2\vec a = \left( {2.2;2.1} \right) = \left( {4;2} \right)\);
Suy ra \(2\vec a + \vec b = \left( {4 + 3;2 + 4} \right) = \left( {7;6} \right)\).
Lại có \(3\vec c = \left( {3.\left( { - 7} \right);3.2} \right) = \left( { - 21;6} \right)\).
Khi đó \(\vec x = 2\vec a + \vec b - 3\vec c = \left( {7 - \left( { - 21} \right);6 - 6} \right) = \left( {28;0} \right)\).
Vậy \(\vec x = \left( {28;0} \right)\).
Do đó ta chọn phương án D.
Góc giữa hai đường thẳng \({\Delta _1}:2x + 2\sqrt 3 y + \sqrt 5 = 0\) và \({\Delta _2}:y - \sqrt 6 = 0\) là:
Trong mặt phẳng tọa độ Oxy, cho hai điểm B(–1; 3) và C(5; 2). Tọa độ của \(\overrightarrow {BC} \) là:
Cho đường tròn (C): x2 + y2 + 2x + 4y – 20 = 0. Tìm mệnh đề sai trong các mệnh đề sau:
Phương trình tham số của đường thẳng ∆ đi qua điểm H(1; 3) và có vectơ pháp tuyến \(\vec n = \left( {2;5} \right)\) là:
Cho hai phương trình \(\frac{{{x^2}}}{9} + \frac{{{y^2}}}{5} = 1\) (1) và \(\frac{{{x^2}}}{5} + \frac{{{y^2}}}{9} = 1\) (2). Phương trình nào là phương trình chính tắc của elip có 2a = 6, 2c = 4?
Khoảng cách từ điểm M(1; –1) đến đường thẳng ∆: \(\left\{ \begin{array}{l}x = 3 + 4t\\y = - 2 + 3t\end{array} \right.\) là: