Trong mặt phẳng tọa độ Oxy, cho đường thẳng d: 3x – 4y – 1 = 0 và điểm I(1; – 2). Gọi (C) là đường tròn tâm I và cắt đường thẳng d tại hai điểm A và B sao cho tam giác IAB có diện tích bằng 4. Viết phương trình đường tròn (C).
Từ điểm I kẻ IH vuông góc với đường thẳng d (H ∈ d).
Khi đó H là trung điểm của AB.
Khoảng cách từ điểm I đến đường thẳng d là: d(I, d) = \(\frac{{\left| {3.1 - 4.\left( { - 2} \right) - 1} \right|}}{{\sqrt {{3^2} + {4^2}} }} = \frac{{10}}{5} = 2\).
Diện tích tam giác IAB bằng 4 nên độ dài cạnh AB bằng: 2.4 : 2 = 4.
⇒ AH = HB = \(\frac{1}{2}\)AB = 2.
Xét tam giác AIH, vuông tại H có: IA = \(\sqrt {I{H^2} + A{H^2}} = \sqrt {{2^2} + {2^2}} = 2\sqrt 2 \).
Khi đó phương trình đường tròn (C) có tâm I(1; – 2) và bán kính IA = \(2\sqrt 2 \) là:
(x – 1)2 + (y + 2)2 = 8.
Thời gian chạy 50 m của 20 học sinh được ghi lại trong bảng dưới đây:
Khoảng biến thiên của bảng số liệu trên là:
Phương tiện bạn Khoa có thể chọn đi từ Hải Dương xuống Hà Nội rồi từ Hà Nội vào Đà Lạt được thể hiện qua sơ đồ cây sau:
Hỏi bạn Khoa có mấy cách chọn đi từ Hải Dương xuống Hà Nội rồi từ Hà Nội vào Đà Lạt.
Cho tập A có n phần tử (n ∈ ℕ, n ≥ 2), k là số nguyên thỏa mãn 1 ≤ k ≤ n. Số các chỉnh hợp chập k của n phần tử trên là:
Cho 8 điểm phân biệt nằm trong mặt phẳng. Hỏi có bao nhiêu đoạn thẳng có hai đầu mút là hai trong 8 điểm đó.
Năng suất lúa hè thu (tạ/ha) năm 1998 của 31 tỉnh ở Việt Nam được thống kê trong bảng sau:
Năng suất lúa (tạ/ha) |
25 |
30 |
35 |
40 |
45 |
Tần số |
4 |
7 |
9 |
6 |
5 |
So sánh Q1 và Q2 ?
Gieo một đồng xu ba lần liên tiếp. Xác suất để xuất hiện ít nhất một lần mặt ngửa là:
41 học sinh của một lớp kiểm tra chất lượng đầu năm thang điểm 30. Kết quả như sau:
Điểm |
9 |
11 |
14 |
16 |
17 |
18 |
20 |
21 |
23 |
25 |
Số lượng (tần số) |
3 |
6 |
4 |
4 |
6 |
7 |
3 |
4 |
2 |
2 |
Phương sai của bảng số liệu trên là:
Ta nói a là số gần đúng của số đúng \(\overline a \) với độ chính xác 0,004 nếu sai số tuyệt đối là:
Thời gian chạy 50m của 20 học sinh được ghi lại trong bảng dưới đây:
Tứ phân vị Q1, Q2, Q3 của bảng số liệu này lần lượt là:
Tốc độ phát triển của một loại virus trong 10 ngày với các điều kiện khác nhau (đơn vị: nghìn con) được thống kê lại như sau:
20 |
100 |
30 |
980 |
440 |
20 |
20 |
150 |
60 |
270 |
Khoảng tứ phân vị của mẫu số liệu trên là:
Cho số gần đúng a = 22 648 024 với độ chính xác d = 101. Hãy viết số quy tròn của số a.
Cho nhị thức \({\left( {2{x^2} + \frac{1}{{{x^3}}}} \right)^n}\), trong đó số nguyên \(n\) thỏa mãn \(A_n^3 = 12n\). Tìm số hạng chứa x5 trong khai triển.
Góc giữa hai đường thẳng \({\Delta _1}:2x + 2\sqrt 3 y + \sqrt 5 = 0\) và \({\Delta _2}:y - \sqrt 6 = 0\) là:
Một lớp có 15 bạn nam và 17 bạn nữ. Lấy ngẫu nhiên 3 bạn để làm đội kỉ luật. Xác suất để đội kỉ luật có ít nhất một bạn nữ là: