A.
B.
C.
D.
Chọn B
+) Gọi K, P lần lượt là trung điểm của AC và AB.
ACN vuông tại N => K là tâm đường tròn ngoại tiếp ACN.
ABM vuông tại M => P là tâm đường tròn ngoại tiếp ABM.
+) Hai mặt phẳng (SAB), (ABC) vuông góc và cắt nhau theo giao tuyến AB nên gọi d1 là trục của đường tròn ngoại tiếp ABM thì d1 qua và Tương tự, gọi d2 là trục của đường tròn ngoại tiếp ACN thì d2 qua và
+) Rõ ràng, trong mặt phẳng (ABC) thì d1d2 lần lượt là đường trung trực của các cạch AB, AC nên hai đường này cắt nhau tại tâm đường tròn ngoại tiếp ABC. Do đó, tâm mặt cầu ngoại tiếp khối đa diện ABCMN cũng là tâm đường tròn ngoại tiếp ABC, bán kính R của mặt cầu này cũng chính là bán kính đường tròn ngoại tiếp ABC.
+) Áp dụng định lí sin cho ABC ta được
Vây diện tích mặt cầu ngoại tiếp khối đa diện ABCMN là
Cho hình chóp S.ABC có đáy là tam giác vuông tại B, AB = 8, BC = 6. Biết SA = 6 và SA vuông góc với mp(ABC). Tính thể tích khối cầu có tâm thuộc phần không gian bên trong của hình chóp và tiếp xúc với tất cả các mặt của hình chóp S.ABC.
Cho hình chóp SABC có SA = 3, AB = 1, AC = 2 và Gọi O là tâm đường tròn ngoại tiếp tam giác ABC. Mặt cầu tâm O và qua A cắt các tia SB, SC lần lượt tại D và. Khi độ dài đoạn BC thay đổi, giá trị lớn nhất của thể tích khối chóp S.ADE là