Đáp án A
Phương pháp:
Sử dụng tổ hợp.
Cách giải:
Đa giác có 10 cạnh suy ra sẽ có 10 đỉnh.
Chọn 2 trong 10 đỉnh ta được các đoạn thẳng chứa cả cạnh và đường chéo của đa giác là \(C_{10}^2.\)
Suy ra đa giác có các đường chéo là \(C_{10}^2 - 10 = 35.\)
Cho hình chóp S.ABCD, đáy ABCD là hình thang lớn AD. Gọi E, F lần lượt là trung điểm của SA, SD.
a) Tìm giao tuyến của các cặp mặt phẳng \(\left( {SAC} \right),\left( {SBD} \right);\left( {SAD} \right),\left( {SBC} \right).\)
b) Chứng minh \(EF\parallel \left( {ABCD} \right);EF\parallel \left( {SBC} \right).\)
c) Gọi K là giao điểm của AB, CD. Tìm M, N lần lượt là giao điểm của SB, \(\left( {CDE} \right)\); SC, \(\left( {EFM} \right)\). Từ đó, tìm thiết diện của hình chóp cắt bởi mặt phẳng \(\left( {KEF} \right).\)
d) Cho \(AD = 2BC.\) Tính tỉ số diện tích của tam giác KMN và tam giác KEF.