Đáp án D
Phương pháp:
Giải phương trình lượng giác cơ bản \[\tan x = \tan \alpha \Leftrightarrow x = \alpha + k\pi \left( {k \in \mathbb{Z}} \right)\].
Cách giải:
\[\tan 2x + \sqrt 3 = 0 \Leftrightarrow \tan 2x = - \sqrt 3 \Leftrightarrow 2x = - \frac{\pi }{3} + k\pi \Leftrightarrow x = - \frac{\pi }{6} + k\frac{\pi }{2}\left( {k \in \mathbb{Z}} \right)\]
1) Cho tập hợp \[A = \left\{ {0;1;2;3;4;5;6;7;8;9} \right\}\]. Có bao nhiêu số tự nhiên có 4 chữ số được thành lập từ tập hợp A.
2) Một hộp có 6 bi đỏ, 7 bi xanh, 8 bi vàng (các bi khác nhau). Lấy ngẫu nhiên 6 bi. Tính xác suất để lấy được ít nhất 3 bi đỏ.