Thứ bảy, 01/06/2024
IMG-LOGO

Câu hỏi:

25/06/2023 40

Giải các phương trình sau:

1) \[\cos 2x = 3\sin x + 1\].                                           2) \[\cos 3x + \cos x - \cos 2x = 0\].

Trả lời:

verified Giải bởi Vietjack

Phương pháp

1)    Sử dụng công thức nhân đôi đưa phương trình về phương trình bậc hai với ẩn \[\cos x\].

2)    Sử dụng công thức cộng \[\cos a + \cos b = 2\cos \frac{{a + b}}{2}\cos \frac{{a - b}}{2}\] và biến đổi phương trình về dạng tích.

Cách giải

1.

Vậy phương trình có nghiệm \[x = k\pi ,k \in \mathbb{Z}\].

2.

\[\begin{array}{l}\cos 3x + \cos x - \cos 2x = 0\\ \Leftrightarrow 2\cos 2x\cos x - \cos 2x = 0 \Leftrightarrow \cos 2x\left( {2\cos x - 1} \right) = 0\\ \Leftrightarrow \left[ \begin{array}{l}\cos 2x = 0\\2\cos x - 1 = 0\end{array} \right. \Leftrightarrow \left[ \begin{array}{l}\cos 2x = 0\\\cos x = \frac{1}{2}\end{array} \right.\\ \Leftrightarrow \left[ \begin{array}{l}2x = \frac{\pi }{2} + k\pi \\x = \pm \frac{\pi }{3} + k2\pi \end{array} \right. \Leftrightarrow \left[ \begin{array}{l}x = \frac{\pi }{4} + \frac{{k\pi }}{2}\\x = \pm \frac{\pi }{3} + k2\pi \end{array} \right.,k \in \mathbb{Z}\end{array}\]

Vậy phương trình có nghiệm \[x = \frac{\pi }{4} + \frac{{k\pi }}{2},x = \pm \frac{\pi }{3} + k2\pi \].

Câu trả lời này có hữu ích không?

0

CÂU HỎI HOT CÙNG CHỦ ĐỀ

Câu 1:

1)    Một hộp chứa 3 quả cầu đen và 2 quả cầu trắng. Lấy ngẫu nhiên đồng thời 2 quả. Tính xác suất để lấy được hai quả cầu khác màu.

2)    Hai người tham gia một trò chơi ném bóng vào rổ, mỗi người ném vào rổ của mình 1 quả bóng. Biết rằng xác suất ném bóng trúng rổ của người thứ nhất, người thứ hai lần lượt là \[\frac{1}{5}\]\[\frac{2}{7}\] và hai người ném một cách độc lập với nhau.

a)     Tính xác suất để hai người cùng ném bóng trúng rổ.

b)    Tính xác suất để có ít nhất một người ném không trúng rổ.

Xem đáp án » 25/06/2023 54

Câu 2:

3) Gọi I là trung điểm của cạnh CD, G là trọng tâm của tam giác SAB. Tìm giao điểm K của IG và \[\left( {OMN} \right)\]. Tính tỉ số \[\frac{{IK}}{{IG}}\].

Xem đáp án » 25/06/2023 53

Câu 3:

2)    Xác định thiết diện của hình chóp khi cắt bởi mặt phẳng \[\left( {OMN} \right)\]. Thiết diện là hình gì, tại sao?

Xem đáp án » 25/06/2023 43

Câu 4:

1) Tìm số hạng không chứa x trong khai triển \[{\left( {2{x^3} - \frac{1}{x}} \right)^{12}},x \ne 0\].

   2) Chứng minh rằng \[{7^{17}}C_{17}^0 + {3.7^{16}}C_{17}^1 + {3^2}{.7^{15}}.C_{17}^2 + ... + {3^{16}}.7C_{17}^{16} + {3^{17}}C_{17}^{17} = {10^{17}}\].

Xem đáp án » 25/06/2023 38

Câu hỏi mới nhất

Xem thêm »
Xem thêm »