Chủ nhật, 22/12/2024
IMG-LOGO

Câu hỏi:

14/07/2024 89

1)    Một hộp chứa 3 quả cầu đen và 2 quả cầu trắng. Lấy ngẫu nhiên đồng thời 2 quả. Tính xác suất để lấy được hai quả cầu khác màu.

2)    Hai người tham gia một trò chơi ném bóng vào rổ, mỗi người ném vào rổ của mình 1 quả bóng. Biết rằng xác suất ném bóng trúng rổ của người thứ nhất, người thứ hai lần lượt là \[\frac{1}{5}\]\[\frac{2}{7}\] và hai người ném một cách độc lập với nhau.

a)     Tính xác suất để hai người cùng ném bóng trúng rổ.

b)    Tính xác suất để có ít nhất một người ném không trúng rổ.

Trả lời:

verified Giải bởi Vietjack

Phương pháp

1)    Tính số phần tử không gian mẫu.

Tính số khả năng có lợi cho biến cố.

Sử dụng công thức tính xác suất \[P\left( A \right) = \frac{{n\left( A \right)}}{{n\left( \Omega \right)}}\].

2)    Sử dụng các quy tắc nhân xác suất, xác suất biến cố đối.

Cách giải

1) Một hộp chứa 3 quả cầu đen và 2 quả cầu trắng. Lấy ngẫu nhiên đồng thời 2 quả. Tính xác suất để lấy được hai quả cầu khác màu.

Phép thử: “Lấy ngẫu nhiên 2 quả cầu”.

\[ \Rightarrow n\left( \Omega \right) = C_5^2 = 10\].

Biến cố A: “Chọn được hai quả cầu khác màu”.

\[ \Rightarrow n\left( A \right) = C_3^1.C_2^1 = 3.2 = 6\].

Xác suất \[P\left( A \right) = \frac{{n\left( A \right)}}{{n\left( \Omega \right)}} = \frac{6}{{10}} = \frac{3}{5}\].

2) Hai người tham gia một trò chơi ném bóng vào rổ, mỗi người ném vào rổ của mình 1 quả bóng. Biết rằng xác suất ném bóng trúng rổ của người thứ nhất, người thứ hai lần lượt là \[\frac{1}{5}\]\[\frac{2}{7}\] và hai người ném một cách độc lập với nhau.

Gọi \[{B_1}\]: “Người 1 trúng rổ”, \[P\left( {{B_1}} \right) = \frac{1}{5}\].

\[{B_2}\]: “Người 2 trúng rổ”, \[P\left( {{B_2}} \right) = \frac{2}{7}\].

a) Tính xác suất để hai người cùng ném bóng trúng rổ.

Gọi biến cố B: Hai người trúng rổ.

Theo quy tắc nhân xác suất ta có: \[P\left( B \right) = P\left( {{B_1}} \right).P\left( {{B_2}} \right) = \frac{1}{5}.\frac{2}{7} = \frac{2}{{35}}\].

b) Tính xác suất để có ít nhất một người ném không trúng rổ.

Gọi biến cố C: Ít nhất một người không trúng rổ.

Biến cố đối \[\overline C \]: Cả hai người đều trúng rổ.

Dễ thấy đây cũng là biến cố B nên \[P\left( {\overline C } \right) = P\left( B \right) = \frac{2}{{35}}\].

Vậy \[P\left( C \right) = 1 - P\left( {\overline C } \right) = 1 - \frac{2}{{35}} = \frac{{33}}{{35}}\].

Câu trả lời này có hữu ích không?

0

CÂU HỎI HOT CÙNG CHỦ ĐỀ

Câu 1:

3) Gọi I là trung điểm của cạnh CD, G là trọng tâm của tam giác SAB. Tìm giao điểm K của IG và \[\left( {OMN} \right)\]. Tính tỉ số \[\frac{{IK}}{{IG}}\].

Xem đáp án » 25/06/2023 76

Câu 2:

2)    Xác định thiết diện của hình chóp khi cắt bởi mặt phẳng \[\left( {OMN} \right)\]. Thiết diện là hình gì, tại sao?

Xem đáp án » 25/06/2023 68

Câu 3:

Giải các phương trình sau:

1) \[\cos 2x = 3\sin x + 1\].                                           2) \[\cos 3x + \cos x - \cos 2x = 0\].

Xem đáp án » 25/06/2023 57

Câu 4:

1) Tìm số hạng không chứa x trong khai triển \[{\left( {2{x^3} - \frac{1}{x}} \right)^{12}},x \ne 0\].

   2) Chứng minh rằng \[{7^{17}}C_{17}^0 + {3.7^{16}}C_{17}^1 + {3^2}{.7^{15}}.C_{17}^2 + ... + {3^{16}}.7C_{17}^{16} + {3^{17}}C_{17}^{17} = {10^{17}}\].

Xem đáp án » 25/06/2023 56

Câu hỏi mới nhất

Xem thêm »
Xem thêm »