Phương pháp:
Sử dụng công thức tính số hạng tổng quát \[{T_{k + 1}} = C_n^k{a^{n - k}}{b^k}\].
Cách giải:
Số hạng tổng quát: \[{T_{k + 1}} = C_5^k.{\left( {3{x^3}} \right)^{5 - k}}.{\left( { - \frac{2}{{{x^2}}}} \right)^k} = C_5^k{.3^{5 - k}}.{x^{15 - 3k}}.\frac{{{{\left( { - 2} \right)}^k}}}{{{x^{2k}}}} = C_5^k{.3^{5 - k}}.{\left( { - 2} \right)^k}.{x^{15 - 5k}}\]
Số hạng không chứa \[x\] ứng với \[15 - 5k = 0 \Leftrightarrow k = 3\]
Vậy số không chứa \[x\] là: \[C_5^3{.3^{5 - 3}}.{\left( { - 2} \right)^3} = - 720\].
Cho cấp số cộng \[\left( {{u_n}} \right)\] là một dãy số tăng thỏa mãn điều kiện \[\left\{ \begin{array}{l}{u_{31}} + {u_{34}} = 11\\u_{31}^2 + u_{34}^2 = 101\end{array} \right.\].
Tìm số hạng đầu tiên \[{u_1}\], công sai \[d\] và số hạng tổng quát của cấp số cộng đó.