Thứ sáu, 22/11/2024
IMG-LOGO

Câu hỏi:

10/07/2024 197

Từ các chữ số 0; 1; 2; 3; 4; 5; 6; 7; 8; 9 có thể lập được tất cả bao nhiêu số tự nhiên chẵn có năm chữ số khác nhau và trong năm chữ số đó có đúng hai chữ số lẻ và hai chữ số lẻ này không đứng cạnh nhau.

Trả lời:

verified Giải bởi Vietjack

Phương pháp:

- Đếm các số chẵn có 5 chữ số khác nhau mà có đúng hai chữ số lẻ.

- Đếm các số chẵn có 5 chữ số khác nhau mà có hai chữ số lẻ đứng cạnh nhau.

- Trừ các kết quả cho nhau ta được đáp số.

Cách giải:

Gọi số có năm chữ số có dạng \[\overline {abcde} \].

TH1: \[e = 0\] có 1 cách chọn.

Chọn 2 chữ số lẻ và 2 chữ số chẵn và xếp vị trí cho chúng có \[C_5^2.C_4^2.4!\] cách chọn.

Do đó có \[C_5^2.C_4^2.4!\] số.

TH2: \[e \in \left\{ {2;4;6;8} \right\}\] có 4 cách chọn.

+) Nếu \[a\] chẵn, \[a \ne 0,{\rm{ }}a \ne e\] thì có 3 cách chọn.

Số cách chọn 3 chữ số còn lại (1 chữ số chẵn và 2 chữ số lẻ) và xếp vị trí cho chúng là \[C_3^1.C_5^2.3!\] cách chọn.

Do đó có \[3.C_3^1.C_5^2.3!\] số.

+) Nếu \[a\] lẻ thì có 5 cách chọn.

Số cách chọn 3 chữ số còn lại (2 chữ số chẵn và 1 chữ số lẻ) và xếp vị trí cho chúng là \[C_4^2.C_4^1.3!\] cách chọn.

Do đó có \[5.C_4^2.C_4^1.3!\] số.

Khi đó số các số chẵn có 5 chữ số khác nhau mà chỉ có đúng 2 chữ số lẻ là

\[C_5^2.C_4^2.4! + 4.\left( {3.C_3^1.C_5^2.3! + 5.C_4^2.C_4^1.3!} \right) = 6480\] số.

Ta tính các số chẵn có 5 chữ số khác nhau chỉ có 2 chữ số lẻ mà chúng đứng cạnh nhau.

Coi hai chữ số lẻ đứng cạnh nhau là một chữ số \[A\], có \[A_5^2\] cách chọn và sắp xếp vị trí của hai chữ số trong \[A\].

Số có dạng \[\overline {abcd} \] với \[a,b,c,d \in \left\{ {A;0;2;4;6;8} \right\}\].

+) Nếu \[a = A\] thì có \[A_5^3\] cách chọn \[b,c,d\].

+) Nếu \[a \ne A,{\rm{ }}a \ne 0\] thì có 4 cách chọn.

\[A\] có thể đứng ở bị trí \[b\] hoặc \[c\] nên có 2 cách xếp.

\[A_4^2\] cách chọn và sắp xếp hai chữ số còn lại.

Do đó có \[A_5^2\left( {A_5^3 + 4.2.A_4^2} \right) = 3120\]

Vậy có \[6480 - 3120 = 3360\] số.

Câu trả lời này có hữu ích không?

0

CÂU HỎI HOT CÙNG CHỦ ĐỀ

Câu 1:

Cho một cấp số cộng \[\left( {{u_n}} \right)\] có số hạng đầu tiên \[{u_1} = 1\] và tổng 100 số hạng đầu tiên bằng 24850. Tính \[S = \frac{1}{{{u_1}{u_2}}} + \frac{1}{{{u_2}{u_3}}} + \frac{1}{{{u_3}{u_4}}} + ... + \frac{1}{{{u_{49}}{u_{50}}}}\].

Xem đáp án » 25/06/2023 92

Câu 2:

Cho hình chóp \[S.ABCD\] có đáy \[ABCD\] là hình bình hành tâm \[O\]. Gọi \[G\] là trọng tâm của tam giác \[SAD\]. Lấy điểm \[M\] thuộc cạnh \[AB\] sao cho \[AB = 3AM\].

Xem đáp án » 25/06/2023 88

Câu 3:

Cho cấp số cộng \[\left( {{u_n}} \right)\] là một dãy số tăng thỏa mãn điều kiện \[\left\{ \begin{array}{l}{u_{31}} + {u_{34}} = 11\\u_{31}^2 + u_{34}^2 = 101\end{array} \right.\].

 Tìm số hạng đầu tiên \[{u_1}\], công sai \[d\] và số hạng tổng quát của cấp số cộng đó.

Xem đáp án » 25/06/2023 80

Câu 4:

Một hộp có chứa 4 quả cầu màu đỏ, 5 quả cầu màu xanh và 7 quả cầu màu vàng. Lấy ngẫu nhiên cùng lúc ra 4 quả cầu từ hộp đó. Tính xác suất sao cho 4 quả cầu được lấy ra có đúng 1 quả cầu màu đỏ và không quá 2 quả cầu màu vàng.

Xem đáp án » 25/06/2023 72

Câu 5:

Tìm số hạng không chứa \[x\] trong khai triển của biểu thức: \[{\left( {2{x^3} - \frac{2}{{{x^2}}}} \right)^5}\].

Xem đáp án » 25/06/2023 68

Câu 6:

Giải phương trình lượng giác sau: \[{\sin ^2}\left( {\frac{x}{2}} \right) - 2{\cos ^2}\left( {\frac{x}{4}} \right) + \frac{3}{4} = 0\].

Xem đáp án » 25/06/2023 61

Câu 7:

3) Mặt phẳng \[\left( \alpha \right)\] đi qua \[M\] và song song với \[AD\] và \[SB\], \[\left( \alpha \right)\] cắt các cạnh \[CD,SD,SA\] lần lượt tại các điểm \[N,P,Q\]. Xác định thiết diện của mặt phẳng \[\left( \alpha \right)\] với hình chóp \[S.ABCD\].

Xem đáp án » 25/06/2023 56

Câu 8:

2) Chứng minh rằng đường thẳng \[MG\] song song với mặt phẳng \[\left( {SBC} \right)\].

Xem đáp án » 25/06/2023 55

Câu hỏi mới nhất

Xem thêm »
Xem thêm »