Đáp án A
Phương pháp:
\({V_{\left( {I;k} \right)}}\left( A \right) = A' \Leftrightarrow \overline {IA'} = k\overline {IA} .\)
Cách giải:
\({V_{\left( {I;2} \right)}}\left( A \right) = A'\left( {x;y} \right) \Leftrightarrow \overline {IA'} = 2\overline {IA} \Leftrightarrow \left\{ \begin{array}{l}x - 3 = 2\left( {1 - 3} \right)\\y - 4 = 2\left( {2 - 4} \right)\end{array} \right. \Leftrightarrow \left\{ \begin{array}{l}x = - 1\\y = 0\end{array} \right. \Rightarrow A'\left( { - 1;0} \right).\)
Cho hình chóp \(S.ABCD\) có đáy \(ABCD\) là hình bình hành. Gọi M, N lần lượt là trung điểm của SA, SB, P là trọng tâm của tam giác BCD.
1. Chứng minh rằng: Đường thẳng MN song song với mặt phẳng \(\left( {SCD} \right).\)
2. Tìm giao tuyến của mp\(\left( {MNP} \right)\) và mp\(\left( {ABCD} \right)\).
3. Tìm giao điểm G của đường thẳng SC và mp\(\left( {MNP} \right).\) Tính tỷ số \(\frac{{SC}}{{SG}}.\)