IMG-LOGO

Câu hỏi:

18/07/2024 50

Cho hình lăng trụ đứng ABC.A’B’C’ có thể tích bằng V. Các điểm M, N, P lần lượt thuộc cạnh AA’, BB’, CC’ sao cho \(\frac{{AM}}{{AA'}} = \frac{1}{2},\,\,\,\frac{N}{{BB'}} = \frac{{CP}}{{CC'}} = \frac{3}{4}\). Thể tích khối đa diện ABC.MNP là:

A. \(\frac{2}{3}V\)

Đáp án chính xác

B. \(\frac{1}{8}V\)

C. \(\frac{1}{3}V\)


D. \(\frac{1}{2}V\)


Trả lời:

verified Giải bởi Vietjack

Đáp án A

Phương pháp:

Phân chia và lắp ghép các khối đa diện.

Cách giải:

Cho hình lăng trụ đứng ABC.A'B'C' có thể tích bằng V. Các điểm M, N, P lần lượt thuộc cạnh AA’ (ảnh 1)

Gọi E, F lần lượt là trung điểm của BB’, CC’. Khi đó: ABC.MEF là hình lăng trụ đứng và \({V_{ABC.MEF}} = \frac{1}{2}V\)

Ta có:

\({V_{M.EFNP}} = \frac{1}{4}{V_{M.BCC'B'}} = \frac{1}{4}.{V_{ABCC'B'}} = \frac{1}{4}.\left( {V - {V_{A.A'B'C'}}} \right) = \frac{1}{4}\left( {V - \frac{V}{3}} \right) = \frac{1}{4}.\frac{2}{3}V = \frac{V}{6}\)

\( \Rightarrow {V_{ABC.MNP}} = {V_{ABC.MEF}} + {V_{M.EFNP}} = \frac{1}{2}V + \frac{1}{6}V = \frac{2}{3}V\)

Câu trả lời này có hữu ích không?

0

CÂU HỎI HOT CÙNG CHỦ ĐỀ

Câu 1:

Giả sử A và B là các giao điểm của đường cong \(y = {x^3} - 3x + 2\) và trục hoành. Tính độ dài đoạn thẳng AB:

Xem đáp án » 27/06/2023 98

Câu 2:

Cho hình chóp S.ABC có \(SA = a,\,\,SB = b,\,\,SC = c\)\(ASB = BSC = CSA = {60^0}\). Tính thể tích của khối chóp S.ABC.

Xem đáp án » 27/06/2023 81

Câu 3:

Giá trị nhỏ nhất của số thực m để hàm số \(y = \frac{1}{3}{x^3} + m{x^2} - mx - m\) đồng biến trên \(\mathbb{R}\) là:

Xem đáp án » 27/06/2023 79

Câu 4:

Cho khối chóp \(S.ABC\)\(SA \bot \left( {ABC} \right)\); tam giác ABC vuông tại A, biết \(BC = 3a;\,\,\,AB = a\). Góc giữa mặt phẳng \(\left( {SBC} \right)\)\(\left( {ABC} \right)\) bằng \({45^0}\). Tính thể tích khối chóp S.ABC theo a.

Xem đáp án » 27/06/2023 71

Câu 5:

Cho bất phương trình \({\log _{\frac{1}{5}}}f\left( x \right) > {\log _{\frac{1}{5}}}g\left( x \right)\). Khi đó, bất phương trình tương đương:

Xem đáp án » 27/06/2023 64

Câu 6:

Cho hình chóp tứ giác đều S.ABCD có cạnh đáy bằng a, góc tạo bởi mặt bên và mặt đáy là \(\alpha \). Thể tích khối chóp S.ABCD là:

Xem đáp án » 27/06/2023 63

Câu 7:

Điều kiện cần và đủ của tham số m để hàm số \(y = {x^3} - {x^2} + mx - 5\) có cực trị là:

Xem đáp án » 27/06/2023 59

Câu 8:

Giá trị lớn nhất của hàm số \(f\left( x \right) = \frac{{mx - 1}}{{2x + m}}\) trên đoạn \(\left[ {3;5} \right]\) bằng 2 khi và chỉ khi:

Xem đáp án » 27/06/2023 59

Câu 9:

Cho các số thực x, y và a thỏa mãn \(x > y;\,\,a > 1\). Khi đó

Xem đáp án » 27/06/2023 59

Câu 10:

Phương trình \({3^{2x + 1}} - {4.3^x} \({x_1},\,{x_2}\) trong đó \({x_1} < {x_2}\), chọn phát biểu đúng.

Xem đáp án » 27/06/2023 58

Câu 11:

Gọi \({y_1},\,{y_2}\) lần lượt là giá trị cực đại và giá trị cực tiểu của hàm số \(y = - {x^4} + 10{x^2} - 9\) . Khi đó, \(\left| {{y_1} - {y_2}} \right|\) bằng:

Xem đáp án » 27/06/2023 57

Câu 12:

Tính đạo hàm của hàm số \(y = x\ln x\)

Xem đáp án » 27/06/2023 57

Câu 13:

Giá trị nhỏ nhất của hàm số \(y = x\sqrt {1 - {x^2}} \) là:

Xem đáp án » 27/06/2023 57

Câu 14:

Cho hàm số \(y = {x^3} - 2m{x^2} + 1\) có đồ thị \(\left( {{C_m}} \right)\). Tìm m sao cho \(\left( {{C_m}} \right)\) cắt đường thẳng \(d:y = x + 1\) tại ba điểm phân biệt có hoành độ \({x_1},\,{x_2},\,{x_3}\) thỏa mãn \({x_1} + {x_2} + {x_3} = 101\)

Xem đáp án » 27/06/2023 56

Câu 15:

Gọi M và m lần lượt là giá trị lớn nhất, giá trị nhỏ nhất của hàm số \(y = 2{\sin ^2}x - \cos \,x + 1\). Thể thì M.m bằng:

Xem đáp án » 27/06/2023 56

Câu hỏi mới nhất

Xem thêm »
Xem thêm »