Có bao nhiêu giá trị nguyên của tham số m để hàm số có 2 cực trị thỏa mãn ?
A. 1
B. 3
C. 0
D. 2
Chọn A
Ta có hàm số
Hàm số có 2 cực trị khi và chỉ khi phương trình có hai nghiệm phân biệt .
Áp dụng định lý Vi-et cho phương trình .
Ta có .
Mà theo đề ta lại có thỏa điều kiện .
Vậy có 1 giá trị nguyên của tham số m thỏa yêu cầu bài toán.
Cho hình chóp SABC có đáy ABC là tam giác đều cạnh 2a , hai mặt bên (SAB) và (SAC) cùng vuông góc với đáy. Góc giữa cạnh bên SB và mặt phẳng (ABC) là . Tính thể tích V khối chóp SABC .
Cho lăng trụ tam giác đều ABCA'B'C' có AB=a ; A'B tạo với mặt đáy (ABC) một góc 60 . Tính thể tích V khối lăng trụ đã cho.
Kí hiệu m,M lần lượt là giá trị nhỏ nhất, giá trị lớn nhất của hàm số trên đoạn . Tính giá trị của biểu thức .
Tìm tất cả các giá trị thực của tham số m sao cho hàm số giảm trên các khoảng xác định của nó?
Đáy của lăng trụ đứng tam giác ABCA'B'C' là tam giác đều. Mặt phẳng (A'BC) tạo với đáy một góc 30o và diện tích tam giác A'BC bằng 8. Tính thể tích khối lăng trụ.
Tất cả các giá trị thực của tham số m sao cho hàm số nghịch biến trên khoảng là , trong đó phân số tối giản và . Hỏi tổng là