Cho hình chóp S.ABC có SA vuông góc mặt phẳng \(\left( {ABC} \right)\), tam giác ABC vuông tại B. Biết \(SA = 2a,\,\,AB = a,\,\,BC = a\sqrt 3 \). Tính bán kính R của mặt cầu ngoại tiếp hình chóp đã cho.
Đáp án C
Phương pháp:
+) Xác định trục của mặt đáy (đường thẳng đi qua tâm đường tròn ngoại tiếp đáy và vuông góc với đáy).
+) Xác định đường trung trực của cạnh bên SA.
+) Xác định giao điểm của 2 đường thẳng trên, đó chính là tâm mặt cầu ngoại tiếp khối chóp.
+) Áp dụng định lí Pytago để tính bán kính mặt cầu.
Cách giải:
Gọi E, F, I lần lượt là trung điểm của AC, AB và SC ta có;
E là tâm đường tròn ngoại tiếp tam giác ABC (\(\Delta ABC\) vuông tại B)
\(IE//SA \Rightarrow IE \bot \left( {ABC} \right) \Rightarrow IA = IB = IC\,\,\,\left( 1 \right)\)
\[{\rm{IF}}//AC \Rightarrow IF \bot SA \Rightarrow IS = IA\,\,\,\left( 2 \right)\]
Từ (1) và (2) \( \Rightarrow \) I là tâm mặt cầu ngoại tiếp khối chóp S.ABC và \(R = \frac{{SC}}{2}\)
Xét tam giác vuông ABC có: \(AC = \sqrt {{a^2} + 3{a^2}} = 2a\)
Xét tam giác vuông SAC có: \(SC = \sqrt {4{a^2} + 4{a^2}} = 2\sqrt 2 a\)
Vậy \(R = \frac{{2\sqrt 2 a}}{2} = a\sqrt 2 \)
Cho số phức z và w thỏa mãn \(z + {\rm{w}} = 3 + 4i\) và \(\left| {z - {\rm{w}}} \right| = 9\). Tìm giá trị lớn nhất của biểu thức \(T = \left| z \right| + \left| {\rm{w}} \right|\)
Cho hình chóp S.ABCD có đáy ABCD là hình bình hành thỏa mãn \(AB = a,\,\,AC = a\sqrt 3 ,\,\,BC = 2a\). Biết tam giác SBC cân tại S, tam giác SCD vuông tại C và khoảng cách từ D đến mặt phẳng \(\left( {SBC} \right)\) bằng \(\frac{{a\sqrt 3 }}{3}\). Tính thể tích V của khối chóp đã cho.
Tìm tham số m để phương trình \({\log _{\sqrt {2018} }}\left( {x - 2} \right) = {\log _{2018}}\left( {mx} \right)\) có nghiệm thực duy nhất.
Trong mặt phẳng phức, gọi A, B, C, D lần lượt là các điểm biểu diễn các số phức \({z_1} = - 1 + i\), \({z_2} = 1 + 2i,\,\,{z_2} = 2 - i,\,\,{z_4} = - 3i\). Gọi S diện tích tứ giác ABCD. Tính S.
Một tổ có 6 học sinh nam và 9 học sinh nữ. Hỏi có bao nhiêu cách chọn 6 học sinh đi lao động, trong đó 2 học sinh nam?
Cho hàm số \(y = x{\mathop{\rm lnx}\nolimits} \). Chọn khẳng định sai trong số các khẳng định sau:
Có bao nhiêu loại khối đa điện đều mà mỗi mặt của nó là một tam giác đều?
Cho số phức z thỏa mãn \(z + 4\overline z = 7 + i\left( {z - 7} \right)\). Khi đó, môđun của z bằng bao nhiêu?
Cho \(\int\limits_{ - 1}^5 {f\left( x \right)dx} = 4\). Tính \(I = \int\limits_{ - 1}^2 {f\left( {2x + 1} \right)dx} \)
Tìm giá trị lớn nhất của hàm số \(f\left( x \right) = {x^3} - 3{x^2} - 9x + 10\) trên \(\left[ { - 2;2} \right]\)
Cho hình phẳng D giới hạn bởi đường cong \(y = \sqrt {2 + \cos \,x} \), trục hoành và các đường thẳng \(x = 0,\,\,x = \frac{\pi }{2}\). Khối tròn xoay tạo thành khi quay D quanh trục hoành có thể tích V bằng bao nhiêu ?
Cho tam giác ABC vuông tại A, \(AB = 6cm,\,\,AC = 8cm\). Gọi \({V_1}\) là thể tích khối nón tạo thành khi quay tam giác ABC quanh cạnh AB và \({V_2}\) là thể tích khối nón tạo thành khi quay tam giác ABC quanh cạnh AC. Khi đó, tỷ số \(\frac{{{V_1}}}{{{V_2}}}\) bằng: