Tìm tham số m để phương trình \({\log _{\sqrt {2018} }}\left( {x - 2} \right) = {\log _{2018}}\left( {mx} \right)\) có nghiệm thực duy nhất.
D. \(m < 2\)
Đáp án C
Phương pháp:
Đưa các logarit về cùng cơ số.
Cách giải:
ĐK: \(\left\{ \begin{array}{l}x > 2\\mx > 0\end{array} \right. \Leftrightarrow \left\{ \begin{array}{l}x > 2\\m > 0\end{array} \right.\)
\({\log _{\sqrt {2018} }}\left( {x - 2} \right) = {\log _{2018}}\left( {mx} \right)\)
\( \Leftrightarrow {\log _{{{2018}^{\frac{1}{2}}}}}\left( {x - 2} \right) = {\log _{2018}}\left( {mx} \right)\)
\( \Leftrightarrow 2{\log _{2018}}\left( {x - 2} \right) = {\log _{2018}}\left( {mx} \right)\)
\( \Leftrightarrow {\log _{2018}}{\left( {x - 2} \right)^2} = {\log _{2018}}\left( {mx} \right)\)
\( \Leftrightarrow {\left( {x - 2} \right)^2} = mx\)
\( \Leftrightarrow {x^2} - \left( {m + 4} \right)x + 4 = 0\,\,\,\left( * \right)\)
Để phương trình ban đầu có nghiệm duy nhất \( \Leftrightarrow pt\left( * \right)\) có nghiệm kép lớn hơn 2 hoặc \(\left( * \right)\) có 2 nghiệm phân biệt \({x_1} < 2 < {x_2}\)
TH1: \(\left( * \right)\) có nghiệm kép lớn hơn 2 \( \Leftrightarrow \Delta = {\left( {m + 4} \right)^2} - 16 = 0 \Leftrightarrow \left[ \begin{array}{l}m = 0\\m = - 8\end{array} \right.\left( {ktm} \right)\)
TH2: \(\left( * \right)\) có 2 nghiệm phân biệt \({x_1} < 2 < {x_2} \Leftrightarrow {x_1} - 2 < 0 < {x_2} - 2\)
\( \Leftrightarrow \left\{ \begin{array}{l}\Delta > 0\\\left( {{x_1} - 2} \right)\left( {{x_2} - 2} \right) < 0\end{array} \right. \Leftrightarrow \left\{ \begin{array}{l}\left[ \begin{array}{l}m > 0\\m < - 8\end{array} \right.\\{x_1}{x_2} - 2\left( {{x_1} + {x_2}} \right) + 4 < 0\end{array} \right. \Leftrightarrow \left\{ \begin{array}{l}\left[ \begin{array}{l}m > 0\\m < - 8\end{array} \right.\\4 - 2\left( {m + 4} \right) + 4 < 0\end{array} \right. \Leftrightarrow m > 0\)
Cho số phức z và w thỏa mãn \(z + {\rm{w}} = 3 + 4i\) và \(\left| {z - {\rm{w}}} \right| = 9\). Tìm giá trị lớn nhất của biểu thức \(T = \left| z \right| + \left| {\rm{w}} \right|\)
Cho hình chóp S.ABCD có đáy ABCD là hình bình hành thỏa mãn \(AB = a,\,\,AC = a\sqrt 3 ,\,\,BC = 2a\). Biết tam giác SBC cân tại S, tam giác SCD vuông tại C và khoảng cách từ D đến mặt phẳng \(\left( {SBC} \right)\) bằng \(\frac{{a\sqrt 3 }}{3}\). Tính thể tích V của khối chóp đã cho.
Trong mặt phẳng phức, gọi A, B, C, D lần lượt là các điểm biểu diễn các số phức \({z_1} = - 1 + i\), \({z_2} = 1 + 2i,\,\,{z_2} = 2 - i,\,\,{z_4} = - 3i\). Gọi S diện tích tứ giác ABCD. Tính S.
Một tổ có 6 học sinh nam và 9 học sinh nữ. Hỏi có bao nhiêu cách chọn 6 học sinh đi lao động, trong đó 2 học sinh nam?
Cho hàm số \(y = x{\mathop{\rm lnx}\nolimits} \). Chọn khẳng định sai trong số các khẳng định sau:
Có bao nhiêu loại khối đa điện đều mà mỗi mặt của nó là một tam giác đều?
Cho số phức z thỏa mãn \(z + 4\overline z = 7 + i\left( {z - 7} \right)\). Khi đó, môđun của z bằng bao nhiêu?
Cho \(\int\limits_{ - 1}^5 {f\left( x \right)dx} = 4\). Tính \(I = \int\limits_{ - 1}^2 {f\left( {2x + 1} \right)dx} \)
Tìm giá trị lớn nhất của hàm số \(f\left( x \right) = {x^3} - 3{x^2} - 9x + 10\) trên \(\left[ { - 2;2} \right]\)
Cho hình phẳng D giới hạn bởi đường cong \(y = \sqrt {2 + \cos \,x} \), trục hoành và các đường thẳng \(x = 0,\,\,x = \frac{\pi }{2}\). Khối tròn xoay tạo thành khi quay D quanh trục hoành có thể tích V bằng bao nhiêu ?
Cho một đa giác đều 2n đỉnh \(\left( {n \ge 2,\,\,n \in N} \right)\). Tìm n biết số hình chữ nhật được tạo ra từ bốn đỉnh trong số 2n đỉnh của đa giác đó là 45.
Cho tam giác ABC vuông tại A, \(AB = 6cm,\,\,AC = 8cm\). Gọi \({V_1}\) là thể tích khối nón tạo thành khi quay tam giác ABC quanh cạnh AB và \({V_2}\) là thể tích khối nón tạo thành khi quay tam giác ABC quanh cạnh AC. Khi đó, tỷ số \(\frac{{{V_1}}}{{{V_2}}}\) bằng: