Ban đầu ta có một tam giác đều cạnh bằng 3 (hình 1). Tiếp đó ta chia mỗi cạnh của tam giác thành 3 đoạn bằng nhau và thay mỗi đoạn ở giữa bởi hai đoạn bằng nó sao cho chúng tạo với đoạn bỏ đi một tam giác đều về phía ngoài ta được hình 2. Khi quay hình 2 xung quanh trục d ta được một khối tròn xoay. Tính thể tích khối tròn xoay đó.
Đáp án C
Phương pháp:
Sử dụng các công thức tính thể tích khối trụ, khối nón.
Cách giải:
Kẻ PS, QR lần lượt qua I và K và vuông góc với AB.
Dễ thấy P, Q, R, S lần lượt là trung điểm của AE, BF, CH, DG.
Hình chữ nhật PQRS có \(PQ = \frac{1}{2} + 1 + \frac{1}{2} = 2,\,\,QK = \frac{{\sqrt 3 }}{2} \Rightarrow QR = \sqrt 3 \)
Quay hình chữ nhật PQRS quanh d ta được \({V_1} = \pi {\left( {\frac{{PQ}}{2}} \right)^2}QR = \pi {.1^2}.\sqrt 3 = \sqrt 3 \pi \)
Khi quay tam giác MEF quanh d ta được \({V_2} = \frac{1}{3}\pi .{\left( {\frac{1}{2}} \right)^2}.\frac{{\sqrt 3 }}{2} = \frac{{\sqrt 3 \pi }}{{24}}\)
Tương tự khi quay tam giác NGH quanh d ta được khối tròn xoay có thể tích \({V_2}\)
Xét tam giác vuông API có: \(PI = \frac{{\sqrt 3 }}{2}\)
Khi quay tam giác API quanh d ta được \({V_3} = \frac{1}{3}\pi .A{P^2}.PI = \frac{1}{3}\pi {\left( {\frac{1}{2}} \right)^2}.\frac{{\sqrt 3 }}{2} = \frac{{\sqrt 3 \pi }}{{24}}\)
Vậy khi xoay hình đã cho quanh d ta được vật tròn xoay có thể tích:
\(V = {V_1} + 2{V_2} + 4.\frac{{{V_3}}}{1} = \frac{{7\sqrt 3 \pi }}{6}\)
Cho số phức z và w thỏa mãn \(z + {\rm{w}} = 3 + 4i\) và \(\left| {z - {\rm{w}}} \right| = 9\). Tìm giá trị lớn nhất của biểu thức \(T = \left| z \right| + \left| {\rm{w}} \right|\)
Cho hình chóp S.ABCD có đáy ABCD là hình bình hành thỏa mãn \(AB = a,\,\,AC = a\sqrt 3 ,\,\,BC = 2a\). Biết tam giác SBC cân tại S, tam giác SCD vuông tại C và khoảng cách từ D đến mặt phẳng \(\left( {SBC} \right)\) bằng \(\frac{{a\sqrt 3 }}{3}\). Tính thể tích V của khối chóp đã cho.
Tìm tham số m để phương trình \({\log _{\sqrt {2018} }}\left( {x - 2} \right) = {\log _{2018}}\left( {mx} \right)\) có nghiệm thực duy nhất.
Trong mặt phẳng phức, gọi A, B, C, D lần lượt là các điểm biểu diễn các số phức \({z_1} = - 1 + i\), \({z_2} = 1 + 2i,\,\,{z_2} = 2 - i,\,\,{z_4} = - 3i\). Gọi S diện tích tứ giác ABCD. Tính S.
Một tổ có 6 học sinh nam và 9 học sinh nữ. Hỏi có bao nhiêu cách chọn 6 học sinh đi lao động, trong đó 2 học sinh nam?
Cho hàm số \(y = x{\mathop{\rm lnx}\nolimits} \). Chọn khẳng định sai trong số các khẳng định sau:
Có bao nhiêu loại khối đa điện đều mà mỗi mặt của nó là một tam giác đều?
Cho số phức z thỏa mãn \(z + 4\overline z = 7 + i\left( {z - 7} \right)\). Khi đó, môđun của z bằng bao nhiêu?
Cho \(\int\limits_{ - 1}^5 {f\left( x \right)dx} = 4\). Tính \(I = \int\limits_{ - 1}^2 {f\left( {2x + 1} \right)dx} \)
Cho hình phẳng D giới hạn bởi đường cong \(y = \sqrt {2 + \cos \,x} \), trục hoành và các đường thẳng \(x = 0,\,\,x = \frac{\pi }{2}\). Khối tròn xoay tạo thành khi quay D quanh trục hoành có thể tích V bằng bao nhiêu ?
Tìm giá trị lớn nhất của hàm số \(f\left( x \right) = {x^3} - 3{x^2} - 9x + 10\) trên \(\left[ { - 2;2} \right]\)
Cho một đa giác đều 2n đỉnh \(\left( {n \ge 2,\,\,n \in N} \right)\). Tìm n biết số hình chữ nhật được tạo ra từ bốn đỉnh trong số 2n đỉnh của đa giác đó là 45.