Trong không gian với hệ tọa độ Oxyz , cho hai điểm \(M\left( {2; - 3;5} \right),\,\,N\left( {6; - 4; - 1} \right)\) và đặt \(L = \left| {\overrightarrow {MN} } \right|\). Mệnh đề nào sau đây là mệnh đề đúng?
D. \(L = \left( { - 4;1;6} \right)\)
Đáp án B
Phương pháp:
\(\overrightarrow {MN} = \left( {{x_N} - {x_M};{y_N} - {y_M};{x_N} - {z_M}} \right)\)
\(\left| {\overrightarrow {MN} } \right| = \sqrt {{{\left( {{x_N} - {x_M}} \right)}^2} + {{\left( {{y_N} - {y_M}} \right)}^2} + {{\left( {{z_N} - {y_M}} \right)}^2}} \)
Cách giải:
\(\overrightarrow {MN} = \left( {4; - 1;6} \right) \Rightarrow \left| {\overrightarrow {MN} } \right| = \sqrt {{4^2} + {{\left( { - 1} \right)}^2} + {{\left( { - 6} \right)}^2}} = \sqrt {53} \)
Cho số phức z và w thỏa mãn \(z + {\rm{w}} = 3 + 4i\) và \(\left| {z - {\rm{w}}} \right| = 9\). Tìm giá trị lớn nhất của biểu thức \(T = \left| z \right| + \left| {\rm{w}} \right|\)
Cho hình chóp S.ABCD có đáy ABCD là hình bình hành thỏa mãn \(AB = a,\,\,AC = a\sqrt 3 ,\,\,BC = 2a\). Biết tam giác SBC cân tại S, tam giác SCD vuông tại C và khoảng cách từ D đến mặt phẳng \(\left( {SBC} \right)\) bằng \(\frac{{a\sqrt 3 }}{3}\). Tính thể tích V của khối chóp đã cho.
Tìm tham số m để phương trình \({\log _{\sqrt {2018} }}\left( {x - 2} \right) = {\log _{2018}}\left( {mx} \right)\) có nghiệm thực duy nhất.
Trong mặt phẳng phức, gọi A, B, C, D lần lượt là các điểm biểu diễn các số phức \({z_1} = - 1 + i\), \({z_2} = 1 + 2i,\,\,{z_2} = 2 - i,\,\,{z_4} = - 3i\). Gọi S diện tích tứ giác ABCD. Tính S.
Một tổ có 6 học sinh nam và 9 học sinh nữ. Hỏi có bao nhiêu cách chọn 6 học sinh đi lao động, trong đó 2 học sinh nam?
Cho hàm số \(y = x{\mathop{\rm lnx}\nolimits} \). Chọn khẳng định sai trong số các khẳng định sau:
Có bao nhiêu loại khối đa điện đều mà mỗi mặt của nó là một tam giác đều?
Cho số phức z thỏa mãn \(z + 4\overline z = 7 + i\left( {z - 7} \right)\). Khi đó, môđun của z bằng bao nhiêu?
Cho \(\int\limits_{ - 1}^5 {f\left( x \right)dx} = 4\). Tính \(I = \int\limits_{ - 1}^2 {f\left( {2x + 1} \right)dx} \)
Cho hình phẳng D giới hạn bởi đường cong \(y = \sqrt {2 + \cos \,x} \), trục hoành và các đường thẳng \(x = 0,\,\,x = \frac{\pi }{2}\). Khối tròn xoay tạo thành khi quay D quanh trục hoành có thể tích V bằng bao nhiêu ?
Tìm giá trị lớn nhất của hàm số \(f\left( x \right) = {x^3} - 3{x^2} - 9x + 10\) trên \(\left[ { - 2;2} \right]\)
Cho một đa giác đều 2n đỉnh \(\left( {n \ge 2,\,\,n \in N} \right)\). Tìm n biết số hình chữ nhật được tạo ra từ bốn đỉnh trong số 2n đỉnh của đa giác đó là 45.