+ Hàm số \(y = a{x^4} + b{x^2} + c\) có đúng một cực trị khi và chỉ khi \(\left\{ \begin{array}{l}ab \ge 0\\{a^2} + {b^2} > 0\end{array} \right..\)\(\left( 1 \right)\)
Đặc biệt: Hàm số trùng phương \(y = a{x^4} + b{x^2} + c\,\,\left( {a \ne 0} \right)\)có đúng một cực trị khi và chỉ khi \(ab \ge 0\).
+ Hàm số \(y = a{x^4} + b{x^2} + c\) có ba cực trị khi và chỉ khi \(ab < 0.\)\(\left( 2 \right)\)
Câu trả lời này có hữu ích không?
0
0
CÂU HỎI HOT CÙNG CHỦ ĐỀ
Câu 1:
Cho hình chóp \(S.ABCD\) có thể tích \(V\). Gọi \(M\), \(N\) lần lượt là trung điểm của \(SA\), \(MC\). Thể tích của khối chóp \(N.ABCD\) là
Cho hàm số \(y = f\left( x \right)\)có đạo hàm \(f'\left( x \right) = {\left( {x + 1} \right)^2}{\left( {x - 1} \right)^3}\left( {2 - x} \right)\). Hàm số \(f\left( x \right)\)đồng biến trên khoảng nào dưới đây?
Cho hàm số \(y = f\left( x \right)\) có đạo hàm liên tục trên \(\mathbb{R}\). Đồ thị hàm số \(y = f'\left( x \right)\) như hình bên dưới.
Hỏi hàm số \(g\left( x \right) = 2f\left( {2 - \frac{x}{2}} \right) + \frac{{{x^2}}}{4} - 2x + 2020\) nghịch biến trên khoảng nào trong các khoảng sau ?
Cho hình chóp \(S.ABCD\) có đáy \(ABCD\) là hình thoi cạnh \(a\), \(AC = a\), cạnh \(SA\)vuông góc với mặt phẳng \(\left( {ABCD} \right)\) và \(SA = a\). Tính thể tích \(V\) của khối chóp \(S.ABCD\).
Cho khối chóp \(S.ABC\) có các cạnh \(SA,{\rm{\;}}SB,{\rm{\;}}SC\) đôi một vuông góc. Biết độ dài các cạnh \(SA,{\rm{\;}}SB,{\rm{\;}}SC\) lần lượt là \(a,{\rm{\;}}b,{\rm{\;}}c\). Thể tích khối chóp \(S.ABC\) là