Cho hàm số y = (2 – m)x + m + 1 (với m là tham số và m ≠ 2) có đồ thị là đường thẳng d.
a) Khi m = 0, hãy vẽ d trên trục tọa độ Oxy.
b) Tìm m để d cắt đường thẳng y = 2x – 5 tại điểm có hoành độ bằng 2.
c) Tìm m để d cùng với các trục tọa độ Ox, Oy tạo thành một tam giác có diện tích bẳng 2.
Lời giải
a) Khi m = 0 thì d có dạng y = 2x + 1
Bảng giá trị:
x |
–1 |
0 |
1 |
y |
–1 |
1 |
3 |
Ta có đường thẳng d đi qua hai điểm A(0; 1) và \({\rm{B}}\left( {\frac{{ - 1}}{2};0} \right)\)
b) Thay x = 2 vào y = 2x – 5 ta có
y = 2 . 2 – 5 = – 1
Thay x = 2, y = – 1 vào d ta có
– 1 = (2 – m). 2 + m + 1
⇔ – 1 = 4 – 2m + m + 1
⇔ m = 6 (thỏa mãn)
Khi m = 6 thì d có dạng y = – 4x + 7 cắt đường thẳng y = 2x – 5
Vậy m = 6 thì d cắt đường thẳng y = 2x – 5 tại điểm có hoành độ bẳng 2.
c) Vì m ≠ 2 nên d cắt Ox tại điểm \({\rm{C}}\left( {\frac{{m + 1}}{{m - 2}};0} \right)\) và cắt Oy tại điểm D(0; m + 1)
Ta có SCOD = \(\frac{1}{2}\left| {\frac{{m + 1}}{{m - 2}}} \right|\left| {m + 1} \right|\)= 2
⇔ (m + 1)2 = 4\(\left| {{\rm{m}} - 2} \right|\)
\( \Leftrightarrow \left[ \begin{array}{l}{\left( {m + 1} \right)^2} = 4(m - 2)\\{\left( {m + 1} \right)^2} = 4(2 - m)\end{array} \right. \Leftrightarrow \left[ \begin{array}{l}{m^2} + 2m + 1 = 4m - 8\\{m^2} + 2m + 1 = 8 - 4m\end{array} \right. \Leftrightarrow \left[ \begin{array}{l}{m^2} - 2m + 9 = 0\\{m^2} + 6m - 7 = 0\end{array} \right.\)
\( \Leftrightarrow \left[ \begin{array}{l}{m^2} - 2m + 9 = 0\\(m - 1)(m + 7) = 0\end{array} \right. \Leftrightarrow \left[ \begin{array}{l}m = 1\\m = - 7\end{array} \right.\)(thỏa mãn)
Vậy m = 1 hoặc m = – 7 thì d cùng với các trục tọa độ Ox, Oy tạo thành một tam giác có diện tích bẳng 2.Cho đường tròn (O) và điểm M nằm ngoài (O). Từ M kẻ hai tiếp tuyến MA, MB với (O) (A, B là các tiếp điểm). Qua M kẻ cát tuyến MCD với đường tròn (O) sao cho điểm C nằm giữa hai điểm M và D.
a) Chứng minh tứ giác MAOB nội tiếp.
b) Gọi H là giao điểm của MO và AB. Chứng minh MC . MD = MA2. Từ đó suy ra MC . MD = MH . MO.
c) Lấy K là trung điểm của CD. Gọi E là giao điểm của BA và OK. Chứng minh EC là tiếp tuyến của (O).
Cho hình bình hành ABCD (AB > AD). Qua A kẻ đường thẳng vuông góc với BD tại E, cắt CD tại I. Qua C kẻ đường thẳng vuông góc với AB tại F, cắt AB tại K.
a) Tứ giác AKCI là hình gì? Vì sao?
b) Chứng minh AF // CE
c) Chứng minh rằng ba đường thẳng AC, EF và KI đồng quy tại một điểm.
Cho tam giác ABC vuông tại A có AC = 6 cm , \(\widehat {ACB} = 30^\circ \) . Vẽ đường tròn (O) đường kính AC cắt BC tại D, dây DE vuông góc với AC tại H
a) Tính BC
b) Chứng minh tam giác CDE đều
c) Qua B vẽ đường thẳng tiếp xúc với (O) tại M. Chứng minh tam giác BDM đồng dạng với tam giác BMC
d) Gọi K là hình chiếu vuông góc của H trên EC và I là trung điểm của HK. Chứng minh DK vuông CI
Cho đoạn thẳng AB có trung điểm I. M là điểm tùy ý không nằm trên đường thẳng AB. Trên MI kéo dài, lấy một điểm N sao cho IN = MI.
a) Chứng minh \(\overrightarrow {BN} - \overrightarrow {BA} = \overrightarrow {MB} \).
b) Tìm các điểm D, C sao cho\(\overrightarrow {NA} + \overrightarrow {NI} = \overrightarrow {N{\rm{D}}} ,\overrightarrow {NM} - \overrightarrow {BN} = \overrightarrow {NC} \).
Cho đường tròn (O; R), đường kính AB. Kẻ tiếp tuyến Ax với đường tròn tại A. Lấy điểm M thuộc tia Ax, kẻ tiếp tuyến MC với đường tròn (O) tại C (C khác A). Tiếp tuyến của đường tròn tại B cắt AC tại D và cắt MC tại F. Nối OM cắt AC tại E
a) Chứng minh tứ giác OBDE nội tiếp.
b) Chứng minh AC. AD = 4R2.
c) Chứng minh AB là tiếp tuyến của đường tròn ngoại tiếp ΔMOF.
Cho tam giác ABC cân ở A và H là trung điểm BC.Gọi I là hình chiếu vuông góc của H lên AC và O là trung điểm của HI. Chứng minh
a) \(\widehat {AHO} = \widehat {BCI}\)
b) AH . IC = HI . HC = HO . BC
c) Tam giác AHO đồng dạng tam giác BCI
d) AO vuông góc BI.
Cho đường tròn (O; R) đường kính AB và tiếp tuyến Ax. Từ điểm C thuộc Ax kẻ tiếp tuyến thứ hai CD với đường tròn (O) (D là tiếp điểm). Gọi giao
điểm của CO và AD là I.
a) Chứng minh: CO ⊥ AD.
b) Gọi giao điểm của CB và đường tròn (O) là E (E ≠ B). Chứng minh CE . CB = CI . CO.
c) Chứng minh: Trực tâm H của tam giác CAD di động trên đường cố định khi
điểm C di chuyển trên Ax.
Cho tam giác ABC có \(\widehat A\) > 90°, kẻ AD vuông góc với AB, AD = AB (tia AD nằm giữa hai tia AB và AC), kẻ AE vuông góc với AC, AE = AC (tia AE nằm giữa hai tia AB, AC). Kẻ AH vuông góc với BC, AH kéo dài cắt DE tại M.
a) Chứng minh hai tam giác ABE; ADC bằng nhau và BE vuông góc với DC.
b) Từ D kẻ DP vuông góc với AM, từ E kẻ EQ vuông góc với AM. Chứng minh
DP = AH.
c) Chứng minh M là trung điểm của đoạn thẳng DE
d) Giả sử EQ = 3 cm; AQ = 4 cm. Từ Q hạ QI vuông góc với AE. Tính độ dài đoạn
thẳng AI; IE.
Cho tam giác ABC. Hãy xác định các điểm I, J, K, L thỏa mãn các đẳng thức sau:
a) \(2\overrightarrow {IB} + 3\overrightarrow {IC} = \overrightarrow 0 \)
b) \(2\overrightarrow {J{\rm{A}}} + \overrightarrow {JC} - \overrightarrow {JB} = \overrightarrow {CA} \)
c) \(\overrightarrow {{\rm{KA}}} + \overrightarrow {KB} + \overrightarrow {KC} = 2\overrightarrow {BC} \)
d) \(3\overrightarrow {{\rm{LA}}} + 2\overrightarrow {LC} - \overrightarrow {LB} = \overrightarrow 0 \)