Cho tam giác ABC có \(\widehat A\) > 90°, kẻ AD vuông góc với AB, AD = AB (tia AD nằm giữa hai tia AB và AC), kẻ AE vuông góc với AC, AE = AC (tia AE nằm giữa hai tia AB, AC). Kẻ AH vuông góc với BC, AH kéo dài cắt DE tại M.
a) Chứng minh hai tam giác ABE; ADC bằng nhau và BE vuông góc với DC.
b) Từ D kẻ DP vuông góc với AM, từ E kẻ EQ vuông góc với AM. Chứng minh
DP = AH.
c) Chứng minh M là trung điểm của đoạn thẳng DE
d) Giả sử EQ = 3 cm; AQ = 4 cm. Từ Q hạ QI vuông góc với AE. Tính độ dài đoạn
thẳng AI; IE.
Lời giải
a) Ta có \(\widehat {BAE} + \widehat {EAD} = \widehat {BAD} = 90^\circ \)
\(\widehat {CA{\rm{D}}} + \widehat {EAD} = \widehat {CAE} = 90^\circ \)
Suy ra \(\widehat {BA{\rm{E}}} = \widehat {CAD}\)
Xét tam giác ABE và tam giác ADC có
AB = AD (giả thiết)
\(\widehat {BA{\rm{E}}} = \widehat {CAD}\)(chứng minh trên)
AC = AE (giả thiết)
Suy ra △ ABE = △ ADC (c.g.c)
Do đó \(\widehat {BEA} = \widehat {ACD}\)
Vì tam giác AEC vuông cân tại A
Nên \(\widehat {CEA} = \widehat {ACE} = \frac{{90^\circ }}{2} = 45^\circ \)
Mà \(\widehat {BEA} = \widehat {ACD}\)
Suy ra \(\widehat {BEA} = \widehat {AEC} = 45^\circ \)
Suy ra \(\widehat {BEA} + \widehat {AEC} = \widehat {BEC} = 45^\circ + 45^\circ = 90^\circ \)
Hay BE ⊥ DC
b) Ta có \(\widehat {BAH} + \widehat {HAD} = \widehat {BAD} = 90^\circ \)
Vì tam giác ABH vuông tại H nên \(\widehat {BAH} + \widehat {HBA} = 90^\circ \) (trong tam giác vuông tổng hai góc nhọn bằng 90°)
Suy ra \(\widehat {DAH} = \widehat {HBA}\)
Vì tam giác ADP vuông tại H nên \(\widehat {PA{\rm{D}}} + \widehat {P{\rm{D}}A} = 90^\circ \) (trong tam giác vuông tổng hai góc nhọn bằng 90°)
Suy ra \(\widehat {BAH} = \widehat {P{\rm{D}}A}\)
Xét tam giác ABH và tam giác DAP có
\(\widehat {DAH} = \widehat {HBA}\) (chứng minh trên)
AB = AD (giả thiết)
\(\widehat {BAH} = \widehat {P{\rm{D}}A}\)(chứng minh trên)
Suy ra △ ABH = △ DAP (g.c.g)
Do đó AH = DP (hai góc tương ứng)
Vậy AH = DP.
c) Ta có \(\widehat {EAQ} + \widehat {CAQ} = \widehat {EAC} = 90^\circ \)
Vì tam giác AEQ vuông tại Q nên \(\widehat {QAE} + \widehat {QEA} = 90^\circ \) (trong tam giác vuông tổng hai góc nhọn bằng 90°)
Suy ra \(\widehat {CAQ} = \widehat {QEA}\)
Xét tam giác AEQ và tam giác CAH có
\(\widehat {AQE} = \widehat {CHA}\left( { = 90^\circ } \right)\)
AE = AC (giả thiết)
\(\widehat {CAQ} = \widehat {QEA}\) (chứng minh trên)
Suy ra △ AEQ = △ CAH (cạnh huyển – góc nhọn)
Do đó AH = EQ (hai góc tương ứng)
Mà AH = DP (chứng minh câu b)
Suy ra EQ = DP
Ta có EQ ⊥ AM, DP ⊥ AM
Suy ra EQ // PD
Xét tứ giác EQDP có EQ // PD, EQ = DP
Suy ra EQDP là hình bình hành
Mà DE cắt PQ ở M
Suy ra M là trung điểm của DE
Vậy M là trung điểm của DE.
d) Vì tam giác AQE vuông ở Q nên AE2 = EQ2 + AQ2
Hay AE2 = 32 + 42 = 9 + 16 = 25
Suy ra AE = 5
Xét tam giác AEQ vuông tại Q có QI ⊥ AE
Suy ra EQ2 = EI . EA (hệ thức lượng trong tam giác vuông)
Hay 32 = EI . 5
Suy ra EI = 1,8
Ta có AI = AE – EI = 5 – 1,8 = 3,2
Vậy EI = 1,8 cm và AI = 3,2 cm.
Cho đường tròn (O) và điểm M nằm ngoài (O). Từ M kẻ hai tiếp tuyến MA, MB với (O) (A, B là các tiếp điểm). Qua M kẻ cát tuyến MCD với đường tròn (O) sao cho điểm C nằm giữa hai điểm M và D.
a) Chứng minh tứ giác MAOB nội tiếp.
b) Gọi H là giao điểm của MO và AB. Chứng minh MC . MD = MA2. Từ đó suy ra MC . MD = MH . MO.
c) Lấy K là trung điểm của CD. Gọi E là giao điểm của BA và OK. Chứng minh EC là tiếp tuyến của (O).
Cho hình bình hành ABCD (AB > AD). Qua A kẻ đường thẳng vuông góc với BD tại E, cắt CD tại I. Qua C kẻ đường thẳng vuông góc với AB tại F, cắt AB tại K.
a) Tứ giác AKCI là hình gì? Vì sao?
b) Chứng minh AF // CE
c) Chứng minh rằng ba đường thẳng AC, EF và KI đồng quy tại một điểm.
Cho tam giác ABC vuông tại A có AC = 6 cm , \(\widehat {ACB} = 30^\circ \) . Vẽ đường tròn (O) đường kính AC cắt BC tại D, dây DE vuông góc với AC tại H
a) Tính BC
b) Chứng minh tam giác CDE đều
c) Qua B vẽ đường thẳng tiếp xúc với (O) tại M. Chứng minh tam giác BDM đồng dạng với tam giác BMC
d) Gọi K là hình chiếu vuông góc của H trên EC và I là trung điểm của HK. Chứng minh DK vuông CI
Cho đoạn thẳng AB có trung điểm I. M là điểm tùy ý không nằm trên đường thẳng AB. Trên MI kéo dài, lấy một điểm N sao cho IN = MI.
a) Chứng minh \(\overrightarrow {BN} - \overrightarrow {BA} = \overrightarrow {MB} \).
b) Tìm các điểm D, C sao cho\(\overrightarrow {NA} + \overrightarrow {NI} = \overrightarrow {N{\rm{D}}} ,\overrightarrow {NM} - \overrightarrow {BN} = \overrightarrow {NC} \).
Cho đường tròn (O; R), đường kính AB. Kẻ tiếp tuyến Ax với đường tròn tại A. Lấy điểm M thuộc tia Ax, kẻ tiếp tuyến MC với đường tròn (O) tại C (C khác A). Tiếp tuyến của đường tròn tại B cắt AC tại D và cắt MC tại F. Nối OM cắt AC tại E
a) Chứng minh tứ giác OBDE nội tiếp.
b) Chứng minh AC. AD = 4R2.
c) Chứng minh AB là tiếp tuyến của đường tròn ngoại tiếp ΔMOF.
Cho tam giác ABC cân ở A và H là trung điểm BC.Gọi I là hình chiếu vuông góc của H lên AC và O là trung điểm của HI. Chứng minh
a) \(\widehat {AHO} = \widehat {BCI}\)
b) AH . IC = HI . HC = HO . BC
c) Tam giác AHO đồng dạng tam giác BCI
d) AO vuông góc BI.
Cho đường tròn (O; R) đường kính AB và tiếp tuyến Ax. Từ điểm C thuộc Ax kẻ tiếp tuyến thứ hai CD với đường tròn (O) (D là tiếp điểm). Gọi giao
điểm của CO và AD là I.
a) Chứng minh: CO ⊥ AD.
b) Gọi giao điểm của CB và đường tròn (O) là E (E ≠ B). Chứng minh CE . CB = CI . CO.
c) Chứng minh: Trực tâm H của tam giác CAD di động trên đường cố định khi
điểm C di chuyển trên Ax.
Cho tam giác ABC. Hãy xác định các điểm I, J, K, L thỏa mãn các đẳng thức sau:
a) \(2\overrightarrow {IB} + 3\overrightarrow {IC} = \overrightarrow 0 \)
b) \(2\overrightarrow {J{\rm{A}}} + \overrightarrow {JC} - \overrightarrow {JB} = \overrightarrow {CA} \)
c) \(\overrightarrow {{\rm{KA}}} + \overrightarrow {KB} + \overrightarrow {KC} = 2\overrightarrow {BC} \)
d) \(3\overrightarrow {{\rm{LA}}} + 2\overrightarrow {LC} - \overrightarrow {LB} = \overrightarrow 0 \)
Cho hai đường thẳng (d1): y = 2x + 5 và (d2): y = (m + 1)x + m – 1
Tìm m để hai đường thẳng cắt nhau tại điểm của tung độ bằng 1.