Cho tam giác ABC đều cạnh 2a, d là đường thẳng qua A và song song BC, khi M di động trên d thì giá trị nhỏ nhất của \(\left| {\overrightarrow {MA} + 2\overrightarrow {MB} - \overrightarrow {MC} } \right|\) là:
Lời giải
Đáp án đúng là A
Gọi K là trung điểm của AC
Vì tam giác ABC đều nên BK là tia phân giác của góc ABC, \(\widehat {ABC} = 60^\circ \)
Suy ra \(\widehat {ABK} = 30^\circ \)
Xét tam giác ABC đều cạnh 2a có K là trung điểm của AC
Nên BK là đường cao, AB = 2a, AK = a
Suy ra tam giác ABK vuông tại K
Do đó AB2 = BK2 + AK2
Hay (2a)2 = BK2 + a2
Suy ra BK = a\(\sqrt 3 \)
Xét điểm I sao cho \(\overrightarrow {IA} + 2\overrightarrow {IB} - \overrightarrow {IC} = \overrightarrow 0 \)
\( \Leftrightarrow \overrightarrow {IA} + 2(\overrightarrow {IA} + \overrightarrow {AB} ) - (\overrightarrow {IA} + \overrightarrow {AC} ) = \overrightarrow 0 \)
\( \Leftrightarrow \overrightarrow {IA} + 2\overrightarrow {IA} + 2\overrightarrow {AB} - \overrightarrow {IA} - \overrightarrow {AC} = \overrightarrow 0 \)
\( \Leftrightarrow 2\overrightarrow {IA} + 2\overrightarrow {AB} - \overrightarrow {AC} = \overrightarrow 0 \)
\( \Leftrightarrow 2\overrightarrow {IA} + \overrightarrow {AB} + \overrightarrow {CB} = \overrightarrow 0 \)
\( \Leftrightarrow \overrightarrow {IA} = \frac{{\overrightarrow {BA} + \overrightarrow {BC} }}{2}\)
\( \Leftrightarrow \overrightarrow {IA} = \overrightarrow {BK} \)
Suy ra I là đỉnh thứ 4 của hình bình hành AIBK
Do đó AI // BK, AI = BK
Suy ra \(\widehat {IAB} = \widehat {ABK}\) (hai góc so le trong)
Mà \(\widehat {ABK} = 30^\circ \) nên \(\widehat {IAB} = 30^\circ \)
Ta có: \(\left| {\overrightarrow {MA} + 2\overrightarrow {MB} - \overrightarrow {MC} } \right|\) = \(\left| {(\overrightarrow {MI} + \overrightarrow {IA} ) + 2(\overrightarrow {MI} + \overrightarrow {IB} ) - (\overrightarrow {MI} + \overrightarrow {IC} )} \right|\)
= \(\left| {2\overrightarrow {MI} + (\overrightarrow {IA} + 2\overrightarrow {IB} - \overrightarrow {IC} )} \right|\) = \(\left| {2\overrightarrow {MI} } \right|\) = 2MI
Vì M ∈ d nên \(\left| {\overrightarrow {MA} + 2\overrightarrow {MB} - \overrightarrow {MC} } \right|\) đạt giá trị nhỏ nhất khi MI ⊥ d
Khi đó \(\widehat {MAI} = \widehat {MAB} - \widehat {IAB} = 60^\circ - 30^\circ = 30^\circ \)
Xét tam giác AMI vuông tại M có
IM = IA. sin\(\widehat {MAI}\)= BK. sin 30° = \(\frac{{BK}}{2}\)= \(\frac{{a\sqrt 3 }}{2}\)
Suy ra \(\left| {\overrightarrow {MA} + 2\overrightarrow {MB} - \overrightarrow {MC} } \right|\) = 2IM = \(a\sqrt 3 \)
Vậy ta chọn đáp án A.
Cho đường tròn (O) và điểm M nằm ngoài (O). Từ M kẻ hai tiếp tuyến MA, MB với (O) (A, B là các tiếp điểm). Qua M kẻ cát tuyến MCD với đường tròn (O) sao cho điểm C nằm giữa hai điểm M và D.
a) Chứng minh tứ giác MAOB nội tiếp.
b) Gọi H là giao điểm của MO và AB. Chứng minh MC . MD = MA2. Từ đó suy ra MC . MD = MH . MO.
c) Lấy K là trung điểm của CD. Gọi E là giao điểm của BA và OK. Chứng minh EC là tiếp tuyến của (O).
Cho hình bình hành ABCD (AB > AD). Qua A kẻ đường thẳng vuông góc với BD tại E, cắt CD tại I. Qua C kẻ đường thẳng vuông góc với AB tại F, cắt AB tại K.
a) Tứ giác AKCI là hình gì? Vì sao?
b) Chứng minh AF // CE
c) Chứng minh rằng ba đường thẳng AC, EF và KI đồng quy tại một điểm.
Cho tam giác ABC vuông tại A có AC = 6 cm , \(\widehat {ACB} = 30^\circ \) . Vẽ đường tròn (O) đường kính AC cắt BC tại D, dây DE vuông góc với AC tại H
a) Tính BC
b) Chứng minh tam giác CDE đều
c) Qua B vẽ đường thẳng tiếp xúc với (O) tại M. Chứng minh tam giác BDM đồng dạng với tam giác BMC
d) Gọi K là hình chiếu vuông góc của H trên EC và I là trung điểm của HK. Chứng minh DK vuông CI
Cho đoạn thẳng AB có trung điểm I. M là điểm tùy ý không nằm trên đường thẳng AB. Trên MI kéo dài, lấy một điểm N sao cho IN = MI.
a) Chứng minh \(\overrightarrow {BN} - \overrightarrow {BA} = \overrightarrow {MB} \).
b) Tìm các điểm D, C sao cho\(\overrightarrow {NA} + \overrightarrow {NI} = \overrightarrow {N{\rm{D}}} ,\overrightarrow {NM} - \overrightarrow {BN} = \overrightarrow {NC} \).
Cho đường tròn (O; R), đường kính AB. Kẻ tiếp tuyến Ax với đường tròn tại A. Lấy điểm M thuộc tia Ax, kẻ tiếp tuyến MC với đường tròn (O) tại C (C khác A). Tiếp tuyến của đường tròn tại B cắt AC tại D và cắt MC tại F. Nối OM cắt AC tại E
a) Chứng minh tứ giác OBDE nội tiếp.
b) Chứng minh AC. AD = 4R2.
c) Chứng minh AB là tiếp tuyến của đường tròn ngoại tiếp ΔMOF.
Cho tam giác ABC cân ở A và H là trung điểm BC.Gọi I là hình chiếu vuông góc của H lên AC và O là trung điểm của HI. Chứng minh
a) \(\widehat {AHO} = \widehat {BCI}\)
b) AH . IC = HI . HC = HO . BC
c) Tam giác AHO đồng dạng tam giác BCI
d) AO vuông góc BI.
Cho đường tròn (O; R) đường kính AB và tiếp tuyến Ax. Từ điểm C thuộc Ax kẻ tiếp tuyến thứ hai CD với đường tròn (O) (D là tiếp điểm). Gọi giao
điểm của CO và AD là I.
a) Chứng minh: CO ⊥ AD.
b) Gọi giao điểm của CB và đường tròn (O) là E (E ≠ B). Chứng minh CE . CB = CI . CO.
c) Chứng minh: Trực tâm H của tam giác CAD di động trên đường cố định khi
điểm C di chuyển trên Ax.
Cho tam giác ABC có \(\widehat A\) > 90°, kẻ AD vuông góc với AB, AD = AB (tia AD nằm giữa hai tia AB và AC), kẻ AE vuông góc với AC, AE = AC (tia AE nằm giữa hai tia AB, AC). Kẻ AH vuông góc với BC, AH kéo dài cắt DE tại M.
a) Chứng minh hai tam giác ABE; ADC bằng nhau và BE vuông góc với DC.
b) Từ D kẻ DP vuông góc với AM, từ E kẻ EQ vuông góc với AM. Chứng minh
DP = AH.
c) Chứng minh M là trung điểm của đoạn thẳng DE
d) Giả sử EQ = 3 cm; AQ = 4 cm. Từ Q hạ QI vuông góc với AE. Tính độ dài đoạn
thẳng AI; IE.
Cho tam giác ABC. Hãy xác định các điểm I, J, K, L thỏa mãn các đẳng thức sau:
a) \(2\overrightarrow {IB} + 3\overrightarrow {IC} = \overrightarrow 0 \)
b) \(2\overrightarrow {J{\rm{A}}} + \overrightarrow {JC} - \overrightarrow {JB} = \overrightarrow {CA} \)
c) \(\overrightarrow {{\rm{KA}}} + \overrightarrow {KB} + \overrightarrow {KC} = 2\overrightarrow {BC} \)
d) \(3\overrightarrow {{\rm{LA}}} + 2\overrightarrow {LC} - \overrightarrow {LB} = \overrightarrow 0 \)