Giải các phương trình thuần nhất đối với sinx và cosx sau
a) sin2 x + sin 2x + 3cos2 x = 3
b) 3sin2 2x – 5sin 2x cos 2x – 8cos2 2x = 0
c) cos2 x – 3sin 2x cos 2x + 1 = 0
Lời giải
a) sin2 x + sin 2x + 3cos2 x = 3
⇔ sin2 x + 2sin x cos x + 3cos2 x = 3
+) cos x = 0 không là nghiệm của phương trình
+) cos x ≠ 0, phương trình có dạng
tan2 x + 2tan x + 3 = 3.\(\frac{1}{{{\rm{co}}{{\rm{s}}^2}x}}\)
⇔ tan2 x + 2tan x + 3 = 3(1 + tan2 x)
⇔ tan2 x + 2tan x + 3 – 3 – 3tan2 x = 0
⇔ – 2tan2 x + 2tan x = 0
⇔ tan2 x – tan x = 0
\[ \Leftrightarrow \left[ \begin{array}{l}{\rm{tan x = 0}}\\{\rm{tan x = 1}}\end{array} \right. \Leftrightarrow \left[ \begin{array}{l}{\rm{x = k}}\pi \\{\rm{x = }}\frac{\pi }{4} + {\rm{k}}\pi \end{array} \right.\]
Vậy x = kπ, x = \(\frac{\pi }{4}\)+ kπ.
b) 3sin2 2x – 5sin 2x cos 2x – 8cos2 2x = 0
+) cos x = 0 không là nghiệm của phương trình
+) cos x ≠ 0, phương trình có dạng
3tan2 2x – 5tan 2x – 8 = 0
⇔ (tan 2x – 1)(3tan 2x + 8) = 0
\( \Leftrightarrow \left[ \begin{array}{l}\tan 2{\rm{x = 1}}\\{\rm{tan2x}} = \frac{{ - 8}}{3}\end{array} \right. \Leftrightarrow \left[ \begin{array}{l}2{\rm{x}} = \frac{\pi }{4} + k\pi \\2{\rm{x}} = \arctan \frac{{ - 8}}{3} + k\pi \end{array} \right. \Leftrightarrow \left[ \begin{array}{l}{\rm{x}} = \frac{\pi }{8} + \frac{{k\pi }}{2}\\{\rm{x}} = \arctan \frac{{ - 8}}{6} + \frac{{k\pi }}{2}\end{array} \right.\)
Vậy \[{\rm{x}} = \frac{\pi }{8} + \frac{{k\pi }}{2};x = \arctan \frac{{ - 8}}{3} + k\pi \].
c) cos2 x – 3sin 2x cos 2x + 1 = 0
+) cos x = 0 không là nghiệm của phương trình
+) cos x ≠ 0, phương trình có dạng
1 – 3tan 2x + \(\frac{1}{{{\rm{co}}{{\rm{s}}^2}2x}}\)= 0
⇔ 1 – 3tan 2x + 1 + tan2 2x = 0
⇔ tan2 2x – 3tan 2x + 2= 0
\( \Leftrightarrow \left[ \begin{array}{l}\tan 2{\rm{x = 1}}\\{\rm{tan2x}} = 2\end{array} \right. \Leftrightarrow \left[ \begin{array}{l}2{\rm{x}} = \frac{\pi }{4} + k\pi \\2{\rm{x}} = \arctan 2 + k\pi \end{array} \right. \Leftrightarrow \left[ \begin{array}{l}{\rm{x}} = \frac{\pi }{8} + \frac{{k\pi }}{2}\\{\rm{x}} = \arctan 1 + \frac{{k\pi }}{2}\end{array} \right.\)
Vậy \[{\rm{x}} = \frac{\pi }{8} + \frac{{k\pi }}{2};x = \arctan 1 + \frac{{k\pi }}{2}\].
Cho đường tròn (O) và điểm M nằm ngoài (O). Từ M kẻ hai tiếp tuyến MA, MB với (O) (A, B là các tiếp điểm). Qua M kẻ cát tuyến MCD với đường tròn (O) sao cho điểm C nằm giữa hai điểm M và D.
a) Chứng minh tứ giác MAOB nội tiếp.
b) Gọi H là giao điểm của MO và AB. Chứng minh MC . MD = MA2. Từ đó suy ra MC . MD = MH . MO.
c) Lấy K là trung điểm của CD. Gọi E là giao điểm của BA và OK. Chứng minh EC là tiếp tuyến của (O).
Cho hình bình hành ABCD (AB > AD). Qua A kẻ đường thẳng vuông góc với BD tại E, cắt CD tại I. Qua C kẻ đường thẳng vuông góc với AB tại F, cắt AB tại K.
a) Tứ giác AKCI là hình gì? Vì sao?
b) Chứng minh AF // CE
c) Chứng minh rằng ba đường thẳng AC, EF và KI đồng quy tại một điểm.
Cho tam giác ABC vuông tại A có AC = 6 cm , \(\widehat {ACB} = 30^\circ \) . Vẽ đường tròn (O) đường kính AC cắt BC tại D, dây DE vuông góc với AC tại H
a) Tính BC
b) Chứng minh tam giác CDE đều
c) Qua B vẽ đường thẳng tiếp xúc với (O) tại M. Chứng minh tam giác BDM đồng dạng với tam giác BMC
d) Gọi K là hình chiếu vuông góc của H trên EC và I là trung điểm của HK. Chứng minh DK vuông CI
Cho đoạn thẳng AB có trung điểm I. M là điểm tùy ý không nằm trên đường thẳng AB. Trên MI kéo dài, lấy một điểm N sao cho IN = MI.
a) Chứng minh \(\overrightarrow {BN} - \overrightarrow {BA} = \overrightarrow {MB} \).
b) Tìm các điểm D, C sao cho\(\overrightarrow {NA} + \overrightarrow {NI} = \overrightarrow {N{\rm{D}}} ,\overrightarrow {NM} - \overrightarrow {BN} = \overrightarrow {NC} \).
Cho đường tròn (O; R), đường kính AB. Kẻ tiếp tuyến Ax với đường tròn tại A. Lấy điểm M thuộc tia Ax, kẻ tiếp tuyến MC với đường tròn (O) tại C (C khác A). Tiếp tuyến của đường tròn tại B cắt AC tại D và cắt MC tại F. Nối OM cắt AC tại E
a) Chứng minh tứ giác OBDE nội tiếp.
b) Chứng minh AC. AD = 4R2.
c) Chứng minh AB là tiếp tuyến của đường tròn ngoại tiếp ΔMOF.
Cho tam giác ABC cân ở A và H là trung điểm BC.Gọi I là hình chiếu vuông góc của H lên AC và O là trung điểm của HI. Chứng minh
a) \(\widehat {AHO} = \widehat {BCI}\)
b) AH . IC = HI . HC = HO . BC
c) Tam giác AHO đồng dạng tam giác BCI
d) AO vuông góc BI.
Cho tam giác ABC có \(\widehat A\) > 90°, kẻ AD vuông góc với AB, AD = AB (tia AD nằm giữa hai tia AB và AC), kẻ AE vuông góc với AC, AE = AC (tia AE nằm giữa hai tia AB, AC). Kẻ AH vuông góc với BC, AH kéo dài cắt DE tại M.
a) Chứng minh hai tam giác ABE; ADC bằng nhau và BE vuông góc với DC.
b) Từ D kẻ DP vuông góc với AM, từ E kẻ EQ vuông góc với AM. Chứng minh
DP = AH.
c) Chứng minh M là trung điểm của đoạn thẳng DE
d) Giả sử EQ = 3 cm; AQ = 4 cm. Từ Q hạ QI vuông góc với AE. Tính độ dài đoạn
thẳng AI; IE.
Cho đường tròn (O; R) đường kính AB và tiếp tuyến Ax. Từ điểm C thuộc Ax kẻ tiếp tuyến thứ hai CD với đường tròn (O) (D là tiếp điểm). Gọi giao
điểm của CO và AD là I.
a) Chứng minh: CO ⊥ AD.
b) Gọi giao điểm của CB và đường tròn (O) là E (E ≠ B). Chứng minh CE . CB = CI . CO.
c) Chứng minh: Trực tâm H của tam giác CAD di động trên đường cố định khi
điểm C di chuyển trên Ax.
Cho tam giác ABC. Hãy xác định các điểm I, J, K, L thỏa mãn các đẳng thức sau:
a) \(2\overrightarrow {IB} + 3\overrightarrow {IC} = \overrightarrow 0 \)
b) \(2\overrightarrow {J{\rm{A}}} + \overrightarrow {JC} - \overrightarrow {JB} = \overrightarrow {CA} \)
c) \(\overrightarrow {{\rm{KA}}} + \overrightarrow {KB} + \overrightarrow {KC} = 2\overrightarrow {BC} \)
d) \(3\overrightarrow {{\rm{LA}}} + 2\overrightarrow {LC} - \overrightarrow {LB} = \overrightarrow 0 \)