a) Vẽ đồ thị hàm số y = –x2 (P) và hàm số y = –2x – 3 (D) trên cùng hệ tọa độ.
b) Tìm tọa độ giao điểm của (P) và (D).
c) Gọi giao điểm (P) và (D) là A. Tính độ dài từ A đến B(5; –7).
Lời giải
a) Bảng giá trị của hàm số y = –x2:
x |
–2 |
–1 |
0 |
1 |
2 |
y |
–4 |
–1 |
0 |
–1 |
–4 |
Bảng giá trị của hàm số y = –2x – 3:
x |
–2 |
–1 |
0 |
y |
1 |
–1 |
–3 |
Đồ thị:
b) Phương trình hoành độ giao điểm của (P) và (D): –x2 = –2x – 3
⇔ x2 – 2x – 3 = 0
⇔ (x – 3)(x + 1) = 0
⇔ x = 3 hoặc x = –1.
Với x = 3, ta có: y = –32 = –9.
Với x = –1, ta có: y = –(–1)2 = –1.
Vậy giao điểm của (P) và (D) là M(–1; –1), N(3; –9).
c) Trường hợp 1: A ≡ M(–1; –1).
Gọi H là giao điểm của hai đường thẳng x = 5 và y = –1.
Suy ra tọa độ H(5; –1).
Ta có: MH = 5 + 1 = 6, BH = 7 – 1 = 6.
Tam giác MBH vuông tại H: MB2 = MH2 + BH2 (Định lí Pytago).
= 62 + 62 = 72.
Suy ra \(MB = 6\sqrt 2 \).
Trường hợp 2: A ≡ N(3; –9).
Ta thực hiện tương tự trường hợp 1, ta được: \(NB = 2\sqrt 2 \).
Vậy độ dài từ A đến B(5; –7) lần lượt là \(6\sqrt 2 \) (khi A(–1; –1)) và \(2\sqrt 2 \) (khi A(3; –9)).
Cho tam giác ABC có ba góc nhọn. Các đường cao AD, BE, CF cắt nhau tại H.
a) Chứng minh và SAEF = cos2A.SABC.
b) Gọi M là trung điểm của BC. Đường thẳng vuông góc với HM tại H cắt AB, AC lần lượt tại P và Q. Chứng minh PH = QH.
c) Chứng minh \(\cot A + \cot B + \cot C \ge \sqrt 3 \).
Cho tam giác ABC vuông tại A, đường cao AH. Kẻ HD vuông góc với AB và HE vuông góc với AC (D trên AB, E trên AC). Gọi O là giao điểm của AH và DE.
a) Chứng minh AH = DE.
b) Gọi P và Q lần lượt là trung điểm của BH và HC. Chứng minh tứ giác DEQP là hình thang vuông.
c) Chứng minh O là trực tâm của tam giác ABQ.
d) Chứng minh SABC = 2SDEQP.
Cho tam giác đều ABC cạnh a, điểm M là trung điểm BC. Dựng các vectơ sau và tính độ dài của chúng.
a) \(\frac{1}{2}\overrightarrow {CB} + \overrightarrow {MA} \);
b) \(\overrightarrow {BA} - \frac{1}{2}\overrightarrow {BC} \);
c) \(\frac{1}{2}\overrightarrow {AB} + 2\overrightarrow {AC} \);
d) \(\frac{3}{4}\overrightarrow {MA} - 2,5\overrightarrow {MB} \).
Từ một điểm A nằm bên ngoài đường tròn (O; R), vẽ hai tiếp tuyến AB, AC với đường tròn (B, C là tiếp điểm). Đường thẳng vuông góc với OB tại O cắt tia AC tại N. Đường thẳng vuông góc với OC tại O cắt AB tại M.
1) Xác định hình tính của tứ giác AMON.
2) Điểm A phải cách O một khoảng là bao nhiêu để MN là tiếp tuyến của (O)?
3) Tính diện tích tứ giác AMON.
Tam giác ABC có AB = AC, tia phân giác của \(\widehat A\) cắt BC tại D.
a) Chứng minh rằng AD vuông góc với BC.
b) Lấy điểm E thuộc cạnh AB, điểm F thuộc cạnh AC sao cho BE = CF. Chứng minh rằng DA là tia phân giác của \(\widehat {EDF}\).
Cho tam giác ABC có 3 góc nhọn, AB < AC, đường cao AD, BE, CF cắt nhau tại H.
a) Chứng minh .
b) EF cắt CB tại M. Chứng minh MB.MC = ME.MF.
c) Biết SABC = 24, BD = 3 và CD = 5. Tính SBHC.
Cho đường tròn (O; R), đường kính MN. Qua M và N vẽ lần lượt hai tiếp tuyến (d) và (d’) với đường tròn (O). Một đường thẳng qua O cắt đường thẳng (d) ở A và cắt đường thẳng (d’) ở P. Từ O vẽ một tia vuông góc với AP và cắt đường thẳng (d’) ở B.
a) Chứng minh OA = OP.
b) Hạ OH vuông góc với AB. Chứng minh OH = R và AB là tiếp tuyến của đường tròn (O).
c) Chứng minh AM.BN = R2.
d) Tìm vị trí của điểm A để diện tích tứ giác ABNM nhỏ nhất.
Cho tam giác ABC có AB = AC. Tia phân giác \(\widehat A\) cắt BC tại D.
a) Chứng minh DB = DC.
b) Chứng minh AD vuông góc BC.
Cho tứ diện ABCD với \(AC = \frac{3}{2}AD,\,\,\widehat {CAB} = \widehat {DAB} = 60^\circ ,\,\,CD = AD\). Gọi φ là góc giữa hai đường thẳng AB và CD. Chọn khẳng định đúng về góc φ.
Cho tam giác ABC vuông tại A có AB = AC. Qua A vẽ đường thẳng d (B, C nằm cùng phía đối với d). Kẻ BM và CN vuông góc với d. Chứng minh rằng:
a) ∆BAM = ∆ACN;
b) MN = BM + CN.