Cho tam giác ABC có AB = 4, AC = 6, \(\widehat {BAC} = 60^\circ \). Tính (làm tròn kết quả đến hàng đơn vị):
a) Độ dài cạnh BC và độ lớn góc B;
b) Bán kính đường tròn ngoại tiếp R;
c) Diện tích của tam giác ABC;
d) Độ dài đường cao xuất phát từ A;
e) \(\overrightarrow {AB} .\overrightarrow {AC} ,\,\,\overrightarrow {AM} .\overrightarrow {AC} \), với M là trung điểm của BC.
Lời giải
a) BC2 = AB2 + AC2 – 2.AB.AC.cos\(\widehat {BAC}\).
= 16 + 36 – 2.4.6.cos60°
= 28.
Suy ra \(BC = 2\sqrt 7 \).
\(\cos \widehat {ABC} = \frac{{A{B^2} + B{C^2} - A{C^2}}}{{2.AB.BC}} = \frac{{16 + 28 - 36}}{{2.4.2\sqrt 7 }} = \frac{{\sqrt 7 }}{{14}}\).
Suy ra \(\widehat {ABC} \approx 79^\circ 6'\).
Vậy \(BC = 2\sqrt 7 \) và \(\widehat {ABC} \approx 79^\circ 6'\).
b) Ta có \(2R = \frac{{BC}}{{\sin A}} \Leftrightarrow R = \frac{{BC}}{{2\sin A}} = \frac{{2\sqrt 7 }}{{2\sin 60^\circ }} = \frac{{2\sqrt {21} }}{3}\).
Vậy bán kính đường tròn ngoại tiếp \(R = \frac{{2\sqrt {21} }}{3}\).
c) Ta có \({S_{ABC}} = \frac{1}{2}.AB.AC.\sin \widehat {BAC} = \frac{1}{2}.4.6.\sin 60^\circ = 6\sqrt 3 \).
Vậy diện tích của tam giác ABC bằng \(6\sqrt 3 \).
d) Ta có \({S_{ABC}} = \frac{1}{2}.AH.BC\), với AH là đường cao xuất phát từ đỉnh A của ∆ABC.
\( \Leftrightarrow 6\sqrt 3 = \frac{1}{2}.AH.2\sqrt 7 \).
\( \Leftrightarrow AH = \frac{{6\sqrt {21} }}{7}\).
Vậy độ dài đường cao xuất phát từ đỉnh A của tam giác ABC là \(\frac{{6\sqrt {21} }}{7}\).
e) Ta có \(\overrightarrow {AB} .\overrightarrow {AC} = \left| {\overrightarrow {AB} } \right|.\left| {\overrightarrow {AC} } \right|.\cos \left( {\overrightarrow {AB} ,\,\,\overrightarrow {AC} } \right) = 4.6.\cos \widehat {BAC} = 24.\cos 60^\circ = 12\).
Ta có \(\overrightarrow {AM} .\overrightarrow {AC} = \frac{1}{2}\left( {\overrightarrow {AB} + \overrightarrow {AC} } \right).\overrightarrow {AC} = \frac{1}{2}.\overrightarrow {AB} .\overrightarrow {AC} + \frac{1}{2}{\overrightarrow {AC} ^2}\)
\( = \frac{1}{2}.12 + \frac{1}{2}.36 = 24\).
Vậy \(\overrightarrow {AB} .\overrightarrow {AC} = 12,\,\,\overrightarrow {AM} .\overrightarrow {AC} = 24\).
Cho tam giác ABC có ba góc nhọn. Các đường cao AD, BE, CF cắt nhau tại H.
a) Chứng minh và SAEF = cos2A.SABC.
b) Gọi M là trung điểm của BC. Đường thẳng vuông góc với HM tại H cắt AB, AC lần lượt tại P và Q. Chứng minh PH = QH.
c) Chứng minh \(\cot A + \cot B + \cot C \ge \sqrt 3 \).
Cho tam giác ABC vuông tại A, đường cao AH. Kẻ HD vuông góc với AB và HE vuông góc với AC (D trên AB, E trên AC). Gọi O là giao điểm của AH và DE.
a) Chứng minh AH = DE.
b) Gọi P và Q lần lượt là trung điểm của BH và HC. Chứng minh tứ giác DEQP là hình thang vuông.
c) Chứng minh O là trực tâm của tam giác ABQ.
d) Chứng minh SABC = 2SDEQP.
Cho tam giác đều ABC cạnh a, điểm M là trung điểm BC. Dựng các vectơ sau và tính độ dài của chúng.
a) \(\frac{1}{2}\overrightarrow {CB} + \overrightarrow {MA} \);
b) \(\overrightarrow {BA} - \frac{1}{2}\overrightarrow {BC} \);
c) \(\frac{1}{2}\overrightarrow {AB} + 2\overrightarrow {AC} \);
d) \(\frac{3}{4}\overrightarrow {MA} - 2,5\overrightarrow {MB} \).
Từ một điểm A nằm bên ngoài đường tròn (O; R), vẽ hai tiếp tuyến AB, AC với đường tròn (B, C là tiếp điểm). Đường thẳng vuông góc với OB tại O cắt tia AC tại N. Đường thẳng vuông góc với OC tại O cắt AB tại M.
1) Xác định hình tính của tứ giác AMON.
2) Điểm A phải cách O một khoảng là bao nhiêu để MN là tiếp tuyến của (O)?
3) Tính diện tích tứ giác AMON.
Tam giác ABC có AB = AC, tia phân giác của \(\widehat A\) cắt BC tại D.
a) Chứng minh rằng AD vuông góc với BC.
b) Lấy điểm E thuộc cạnh AB, điểm F thuộc cạnh AC sao cho BE = CF. Chứng minh rằng DA là tia phân giác của \(\widehat {EDF}\).
Cho tam giác ABC có 3 góc nhọn, AB < AC, đường cao AD, BE, CF cắt nhau tại H.
a) Chứng minh .
b) EF cắt CB tại M. Chứng minh MB.MC = ME.MF.
c) Biết SABC = 24, BD = 3 và CD = 5. Tính SBHC.
Cho đường tròn (O; R), đường kính MN. Qua M và N vẽ lần lượt hai tiếp tuyến (d) và (d’) với đường tròn (O). Một đường thẳng qua O cắt đường thẳng (d) ở A và cắt đường thẳng (d’) ở P. Từ O vẽ một tia vuông góc với AP và cắt đường thẳng (d’) ở B.
a) Chứng minh OA = OP.
b) Hạ OH vuông góc với AB. Chứng minh OH = R và AB là tiếp tuyến của đường tròn (O).
c) Chứng minh AM.BN = R2.
d) Tìm vị trí của điểm A để diện tích tứ giác ABNM nhỏ nhất.
Cho tam giác ABC có AB = AC. Tia phân giác \(\widehat A\) cắt BC tại D.
a) Chứng minh DB = DC.
b) Chứng minh AD vuông góc BC.
Cho tứ diện ABCD với \(AC = \frac{3}{2}AD,\,\,\widehat {CAB} = \widehat {DAB} = 60^\circ ,\,\,CD = AD\). Gọi φ là góc giữa hai đường thẳng AB và CD. Chọn khẳng định đúng về góc φ.
Cho tam giác ABC vuông tại A có AB = AC. Qua A vẽ đường thẳng d (B, C nằm cùng phía đối với d). Kẻ BM và CN vuông góc với d. Chứng minh rằng:
a) ∆BAM = ∆ACN;
b) MN = BM + CN.
Cho tứ giác ABCD. Gọi M, N lần lượt là trung điểm của AD, BC.
a) Chứng minh \(\overrightarrow {MN} = \frac{1}{2}\left( {\overrightarrow {AB} + \overrightarrow {DC} } \right)\).
b) Xác định điểm O sao cho \(\overrightarrow {OA} + \overrightarrow {OB} + \overrightarrow {OC} + \overrightarrow {OD} = \vec 0\).