Cho tam giác ABC có trọng tâm G, hai điểm M, N thỏa mãn \(\overrightarrow {MA} = 2\overrightarrow {MB} ;\)\(3\overrightarrow {NA} + 2\overrightarrow {NC} = \overrightarrow 0 \).
a) Xác định 2 điểm M, N.
b) Tính \(\overrightarrow {MN} \) theo 2 vectơ \(\overrightarrow {AB} ,\overrightarrow {AC} \).
c) Tính \(\overrightarrow {MG} \)theo 2 vectơ \(\overrightarrow {AB} ,\overrightarrow {AC} \). Suy ra 3 điểm M, N, G thẳng hàng.
a) Ta có \(\overrightarrow {MA} = 2\overrightarrow {MB} \)
Suy ra M thuộc đường thẳng AB sao cho B là trung điểm của AM.
Ta có \(3\overrightarrow {NA} + 2\overrightarrow {NC} = \overrightarrow 0 \Leftrightarrow 3\overrightarrow {NA} + 2\overrightarrow {NA} + 2\overrightarrow {AC} = \overrightarrow 0 \Leftrightarrow 5\overrightarrow {NA} = 2\overrightarrow {CA} \Leftrightarrow \overrightarrow {AN} = \frac{2}{5}\overrightarrow {AC} \)
Suy ra N thuộc đoạn thẳng AC sao cho \(AN = \frac{2}{5}AC\).
b) Ta có \(\overrightarrow {MA} = 2\overrightarrow {MB} \Leftrightarrow \overrightarrow {MA} - 2\overrightarrow {MB} = \overrightarrow 0 \Leftrightarrow \overrightarrow {MA} - 2\overrightarrow {MA} - 2\overrightarrow {AB} = \overrightarrow 0 \Leftrightarrow \overrightarrow {AM} = 2\overrightarrow {AB} \)
Suy ra \(\overrightarrow {MN} = \overrightarrow {AN} - \overrightarrow {AM} = \frac{2}{5}\overrightarrow {AC} - 2\overrightarrow {AB} \).
c) Gọi I là trung điểm của BC.
Vì G là trọng tâm tam giác ABC nên ta có:
\(\overrightarrow {AG} = \frac{2}{3}\overrightarrow {AI} = \frac{2}{3}.\frac{1}{2}\left( {\overrightarrow {AB} + \overrightarrow {AC} } \right) = \frac{1}{3}\left( {\overrightarrow {AB} + \overrightarrow {AC} } \right)\)
Ta có \(\overrightarrow {MG} = \overrightarrow {AG} - \overrightarrow {AM} = \frac{1}{3}\left( {\overrightarrow {AB} + \overrightarrow {AC} } \right) - 2\overrightarrow {AB} = \frac{{ - 5}}{3}\overrightarrow {AB} + \frac{1}{3}\overrightarrow {AC} \)
\( = \frac{5}{6}.\left( {\frac{2}{5}\overrightarrow {AC} - 2\overrightarrow {AB} } \right) = \frac{5}{6}\overrightarrow {MN} \).
Do đó \(\overrightarrow {MG} = \frac{5}{6}\overrightarrow {MN} \)
Suy ra M, N , G thẳng hàng.
Cho tứ giác ABCD. Gọi M, N, P lần lượt là trung điểm của AD, BC và AC. Biết MP = PN. Chọn câu đúng.
Cho tam giác ABC có AB = AC, gọi D là trung điểm của BC. Chứng minh
a) Tam giác ADB bằng tam giác ADC.
b) AD là tia phân giác của góc BAC.
c) AD vuông góc BC.
Cho DABC đều cạnh a. Gọi I là trung điểm BC.
a) Tính \(\left| {\overrightarrow {AB} - \overrightarrow {AC} } \right|\).
b) Tính \(\left| {\overrightarrow {BA} - \overrightarrow {BI} } \right|\).
Cho tam giác ABC có \(\widehat B = \widehat C\) . Tia phân giác của góc A cắt BC tại D. Chứng minh rằng:
a) Tam giác ADB bằng tam giác ADC
b) AB = AC.
Cho bảng biến thiên hàm số y = f(x) như sau:
So sánh f(– 2021) và f(– 1); \(f\left( {\sqrt 3 } \right)\) và f(2).
Bước 1: Gọi a, b, c, d lần lượt là tọa đọ của điểm A, B, C, D trên trục x’Ox. Ta có
\(\overline {AB} .\overline {C{\rm{D}}} \) = (b – a)(d – c) = bd – ad – bc + ac (1)
Bước 2: Tương tự \(\overline {AC} .\overline {{\rm{DB}}} \) = cb – ab – cd + ad (2)
Bước 3: Tương tự \(\overline {AD} .\overline {BC} \) = dc – ac – ba + ab (3)
Bước 4: Cộng (1), (2), (3) theo từng vế và rút gọn ta suy ra:
\(\overline {AB} .\overline {C{\rm{D}}} + \overline {AC} .\overline {DB} + \overline {A{\rm{D}}} .\overline {BC} = 0\)
Học sinh giải sai từ bước nào?
Cho tam giác ABC có a = 8, b = 10, \(\widehat C = 60^\circ \). Độ dài cạnh c là
Cho tam giác ABC. Dựng phía ngoài tam giác các tam giác đều ABC', BCA', CAB'. Gọi M, N, P lần lượt là trung điểm của CA’, AB’, AC’. Chứng minh rằng:
a) MN = PC.
b) Gọi O là giao điểm của MN và PC. Chứng minh \(\widehat {MOC} = 60^\circ \).
Cho A = (m; m + 1) ; B = (3; 5)
a) Tìm m để A hợp B là một khoảng. Xác định các khoảng đó.
b) A ∩ B ≠ ∅.
c) A ∩ B = ∅.
Tìm m để hàm số y = \(\sqrt {{x^2} + 4{\rm{x}} + m} \)có tập xác định là ℝ.
Tìm giá trị thực của tham số m khác 0 để hàm số y = mx2 – 2mx – 3m – 2 có giá trị nhỏ nhất bằng – 10 trên ℝ.
Cho tam giác đều ABC cạnh a, gọi G là trọng tâm. Khi đó giá trị \(\left| {\overrightarrow {AB} - \overrightarrow {GC} } \right|\) là:
Rút gọn biểu thức sau
a) \(\sqrt {5 - 2\sqrt 6 } + \sqrt 2 \);
b) \(\sqrt {8 - 2\sqrt {15} } - \sqrt 5 \);
c) \(\sqrt {7 - 4\sqrt 3 } + 2\);
e) \(\sqrt {35 - 12\sqrt 6 } \);
g) \(\sqrt {7 - 3\sqrt 5 } \);
f) \(\sqrt {11 - 6\sqrt 2 } \).