IMG-LOGO

Câu hỏi:

08/07/2024 52

Cho tanα = – 2. Tính giá trị biểu thức \(A = \frac{{3c{\rm{os}}\alpha + 4\sin \alpha }}{{{\rm{cos}}\alpha + \sin \alpha }}\) .

Trả lời:

verified Giải bởi Vietjack

tanα = – 2 nên cosα 0.

Ta có \(A = \frac{{3c{\rm{os}}\alpha + 4\sin \alpha }}{{{\rm{cos}}\alpha + \sin \alpha }} = \frac{{\frac{{3c{\rm{os}}\alpha + 4\sin \alpha }}{{c{\rm{os}}\alpha }}}}{{\frac{{{\rm{cos}}\alpha + \sin \alpha }}{{c{\rm{os}}\alpha }}}} = \frac{{3 + 4\tan \alpha }}{{1 + \tan \alpha }}\) (vì \(\tan \alpha = \frac{{\sin \alpha }}{{{\rm{cos}}\alpha }}\))

Thay tanα = – 2 vào biểu thức trên ta được:

Nên \(A = \frac{{3 + 4.\left( { - 2} \right)}}{{1 + \left( { - 2} \right)}} = \frac{{ - 5}}{{ - 1}} = 5\).

Vậy A = 5.

Câu trả lời này có hữu ích không?

0

CÂU HỎI HOT CÙNG CHỦ ĐỀ

Câu 1:

Cho hình thang ABCD (AB // CD, AB < CD), hai tia phân giác của góc B và góc C cắt nhau ở I. Qua I kẻ đường thẳng song song với BC cắt AB, CD lần lượt tại E và F.

a) Chứng minh tam giác BEI cân tại E và tam giác IFC cân tại F.

b) Chứng minh EF = BE + CF.

Xem đáp án » 12/07/2023 102

Câu 2:

Cho tam giác ABC vuông tại A, đường cao AH. Qua H kẻ các đường thẳng song song với AB và AC lần lượt cắt AC tại E, AB tại D.

a) Chứng minh rằng: Tứ giác ADHE là hình chữ nhật.

b) Gọi M, N lần lượt là trung điểm của BH và CH. Biết AB = 6 cm; AC = 8 cm. Tính BC, DM, DM + EN?

c) Chứng minh rằng: Tứ giác DMNE là hình thang.

Xem đáp án » 12/07/2023 86

Câu 3:

Từ điểm A ở bên ngoài đường tròn (O), kẻ hai tiếp tuyến AB, AC đến đường tròn (O) (B, C là 2 tiếp điểm). Kẻ cát tuyến ADE với đường tròn (O) (D nằm giữa A và E).

a) Chứng minh: bốn điểm A, B, O, C cùng thuộc một đường tròn.

b) Chứng minh: OA BC tại H và OD2 = OH . OA. Từ đó suy ra tam giác OHD đồng dạng với tam giác ODA.

c) Chứng minh CB trùng với tia phân giác của góc DHE.

d) Từ D kẻ đường thẳng song song với BE, đường thẳng này cắt AB, BC lần lượt tại M và N. Chứng minh: D là trung điểm của MN.

Xem đáp án » 12/07/2023 80

Câu 4:

Chứng minh các hệ thức

a) \(1 + {\tan ^2}a = \frac{1}{{{\rm{co}}{{\rm{s}}^2}a}}\);

b) \(1 + {\cot ^2}a = \frac{1}{{{\rm{si}}{{\rm{n}}^2}a}}\);

c) \(\frac{{\cos a}}{{1 - \sin a}} = \frac{{1 + \sin a}}{{\cos a}}\).

Xem đáp án » 12/07/2023 79

Câu 5:

Cho hình vuông ABCD. Trên tia đối của tia BA lấy điểm E, trên tia đối của tia CB lấy điểm F sao cho AE = CF.

a) Chứng minh tam giác EDF vuông cân.

b) Gọi I là trung điểm của EF. Chứng minh BI = DI.

c) Gọi O là giao điểm của hai đường chéo AC và BD. Chứng minh O, C, I thẳng hàng.

Xem đáp án » 12/07/2023 78

Câu 6:

Cho hình chóp đỉnh S có đáy là hình thang ABCD với AB là đáy lớn. Gọi M, N theo thứ tự là trung điểm của các cạnh SB và SC.

a) Tìm giao tuyến của hai mặt phẳng (SAD) và (SBC).

b) Tìm giao điểm của đường thẳng SD với mặt phẳng (AMN).

c) Tìm thiết diện của hình chóp S.ABCD cắt bởi mặt phẳng (AMN).

Xem đáp án » 12/07/2023 77

Câu 7:

Phương trình \(\sqrt 3 \sin x - cosx = 1\) tương đương với phương trình nào sau đây?

Xem đáp án » 12/07/2023 76

Câu 8:

Cho tam giác ABC nhọn. Chứng minh rằng BC2 = AB2 + AC2 – 2AB.AC.cosA.

Xem đáp án » 12/07/2023 75

Câu 9:

Cho tam giác ABC có 3 góc nhọn và AB < AC. Các đường cao BE, CF cắt nhau tại H. Gọi M là trung điểm của BC. Trên tia đối của MH lấy điểm K sao cho HM = MK.

a) Chứng minh: Tứ giác BHCK là hình bình hành.

b) Chứng minh BK vuông góc AB và CK vuông góc AC.

c) Gọi I là điểm đối xứng với H qua BC. Chứng minh: Tứ giác BIKC là hình thang cân.

d) BK cắt HI tại G. Tam giác ABC phải có thêm điều kiện gì để tứ giác GHCK là hình thang cân.

Xem đáp án » 12/07/2023 74

Câu 10:

Cho đường tròn tâm O bán kính R = 2,5 cm và dây AB di động, sao cho AB = 4 cm. Hỏi trung điểm H của AB di động trên đường nào?

Xem đáp án » 12/07/2023 73

Câu 11:

Cho tam giác ABC nhọn, BD vuông góc với AC, D thuộc AC, CE vuông góc với AB, E thuộc AB, BD cắt CE tại I. Chứng minh góc BIC bù góc A.

Xem đáp án » 12/07/2023 72

Câu 12:

Cho tam giác ABC với AB = AC. Lấy I là trung điểm BC. Trên tia BC lấy điểm N, trên tia CB lấy điểm M sao cho CN = BM. Chứng minh:

a) \(\widehat {ABI} = \widehat {ACI}\)và AI là tia phân giác của góc BAC.

b) AM = AN.

c) AI vuông góc với BC.

Xem đáp án » 12/07/2023 72

Câu 13:

Cho tam giác ABC cân tại A \(\left( {\widehat A < 90^\circ } \right)\), đường cao AH. Kẻ HK AC (K AC).

a) Tính HC, HK, \(\widehat C\) nếu AH = 20 cm, AC = 25 cm.

b) Qua B kẻ đường thẳng song song với AH, đường thẳng này cắt AC tại điểm E. Kẻ BD AC (D AC). Chứng minh \(B{H^2} = \frac{{C{\rm{D}}.CE}}{4}\).

c) Gọi O là giao điểm của BD và AH. Chứng minh \(\frac{{BO}}{{DO}} = \frac{{A{\rm{E}}}}{{A{\rm{D}}}}\).

d) Kẻ KF BC (F BC). Chứng minh CF = AC. sin3E.

Xem đáp án » 12/07/2023 71

Câu 14:

Một người bỏ ra 250 000 đồng (tiền vốn) để mua rau. Sau khi bán hết số rau này thì thu được 300 000 đồng. Hỏi người đó được lãi bao nhiêu phần trăm?

Xem đáp án » 12/07/2023 69

Câu 15:

Cho tam giác ABC với AB = AC. Lấy I là trung điểm BC. Trên tia BC lấy điểm N, trên tia CB lấy điểm M sao cho CN = BM. Chứng minh:

a) \(\widehat {ABI} = \widehat {ACI}\)và AI là tia phân giác của góc BAC.

b) AM = AN.

c) AI vuông góc với BC.

Xem đáp án » 12/07/2023 66

Câu hỏi mới nhất

Xem thêm »
Xem thêm »