Cho tam giác ABC với A = (2; 3), B = (–1; 4), C = (1; 1). Tìm các tọa độ của đỉnh D của:
a) Hình bình hành ABCD;
b) Hình bình hành ACBD.
a) Gọi D (a ; b) là đỉnh của hình bình hành ABCD,
Ta có: \(\overrightarrow {BC} = \left( {1 + 1;\,\,1 - 4} \right) = \left( {2;\,\, - 3} \right)\); \(\overrightarrow {AD} = \left( {a - 2;\,\,b - 3} \right)\).
Vì ABCD là hình bình hành nên \(\overrightarrow {BC} = \overrightarrow {AD} \)
\( \Rightarrow \left\{ {\begin{array}{*{20}{c}}{2 = a - 2}\\{ - 3 = b - 3}\end{array}} \right.\)\( \Leftrightarrow \left\{ {\begin{array}{*{20}{c}}{a = 4}\\{b = 0}\end{array}} \right.\)
⟹ D(4; 0);
b) Ta có: \(\overrightarrow {DA} = \left( {2 - a;\,\,3 - b} \right)\).
Vì ACBD là hình bình hành nên \(\overrightarrow {BC} = \overrightarrow {DA} \)
\( \Rightarrow \left\{ {\begin{array}{*{20}{c}}{2 = 2 - a}\\{ - 3 = 3 - b}\end{array}} \right.\)\( \Leftrightarrow \left\{ {\begin{array}{*{20}{c}}{a = 0}\\{b = 6}\end{array}} \right.\)
⇒ D (0; 6).
Cho tam giác ABC có trung tuyến AM, gọi I là trung điểm AM. Đẳng thức nào sau đây đúng?
Từ một điểm A nằm ngoài đường tròn (O; R) kẻ tiếp tuyến AB với (O) (B là tiếp điểm). Đường thẳng đi qua B vuông góc với OA tại H và cắt đường tròn (O) tại C. Vẽ đường kính BD. Đường thẳng AO cắt đường tròn (O) tại hai điểm M và N (M nằm giữa A và N). Chứng minh:
a) CD // OA.
b) AC là tiếp tuyến của đường tròn (O).
c) Cho biết R = 15 cm, BC = 24 cm. Tính AB, OA.
Cho tam giác ABC nhọn (AB < AC). Gọi M, N, K lần lượt là trung điểm của AB, AC, BC. Đường cao AH
a) Chứng minh tứ giác MNKH là hình thang cân
b) Gọi E là điểm đối xứng của M qua N. Tứ giác AMCE là hình gì?
c) Tam giác ABC cần có thêm điều kiện gì thì tứ giác AECM là hình chữ nhật?
Cho \(\cos \alpha = \frac{4}{5}\) với 0 < α < \(\frac{\pi }{2}\). Tính sinα.
Cho tam giác ABC cân tại A. Trên tia đối của tía AC lấy điểm D. Trên tia đối của tia AB lấy điểm E sao cho AD = AE. Chứng minh DECB là hình thang cân.
Cho nửa đường tròn tâm O với bán kính R, đường kính AB. Trên nửa mặt phẳng bờ là đường thẳng AB chứa nửa đường tròn, kẻ tiếp tuyến Ax tại A của nửa đường tròn. Xét điểm M thay đổi trên Ax, không trùng với A. Gọi E là điểm đối xứng với A qua OM.
a) Chứng minh rằng ME là một tiếp tuyến của nửa đường tròn (O)
b) Đoạn OM cắt nửa đường tròn (O) tại I. Chứng minh rằng I là tâm đường tròn nội tiếp của tam giác AME
c) Gọi N là trung điểm EB. Tia ME cắt ON tại P. Hãy xác định vị trí của điểm M trên tia Ax để diện tích tam giác OMP đạt giá trị nhỏ nhất. Tính giá trị nhỏ nhất đó theo R.
c) Gọi C là giao điểm của BE và tia Ax, OC cắt AE tại Q. Kẻ đường thẳng qua Q và song song với Ax, cắt OM tại D. Chứng minh rằng A, D, P thẳng hàng.
Cho tam giác ABC vuông tại C (AC < BC), đường cao CK và đường phân giác trong BD (K Î AB, D Î AC). Qua D kẻ đường thẳng vuông góc với AC cắt CK, AB lần lượt tại H và I.
a) Chứng minh CDKI là tứ giác nội tiếp.
b) Chứng minh AD.AC = DH.AB
c) Gọi F là trung điểm AD. Đường tròn tâm I bán kính ID cắt BC tại M (M khác B) và cắt AM tại N (N khác M). Chứng minh B, N, F thẳng hàng.
Cho ∆ABC cân tại A. H là trung điểm của BC. D là hình chiếu của H trên AC, M là trung điểm của HD. Chứng minh AM vuông góc BD.
Cho tam giác ABC, AB = AC. Tia phân giác của góc A cắt BC tại M.
a) Chứng minh: ∆AMB = ∆AMC.
b) Chứng minh M là trung điểm của cạnh BC.
c) K là một điểm bất kì trên đoạn thẳng AM, đường thẳng CK cắt cạnh AB tại I. Vẽ IH vuông góc với BC tại H. Chứng minh \(\widehat {BAC} = 2\widehat {BIH}\).
Cho nửa đường tròn tâm O bán kính R đường kính AB. Gọi Ax, By là các tia tiếp tuyến của nửa đường tròn và thuộc cùng 1 nửa mặt phẳng có chứa nửa đường tròn qua M thuộc nửa đường tròn vẽ tiếp tuyến với nửa đường với nửa đường tròn cắt Ax, By lần lượt tại C, D.
a) Chứng minh rằng CD = AC + BD, \(\widehat {COD} = 90^\circ \)
b) AC.BD = R2
c) Chứng minh AB là tiếp tuyến của đường tròn, đường kính CD
d) AD cắt BC tại N, MN cắt AB tại K. Chứng minh rằng: MN // AC
Tìm A ∪ B ∪ C, A ∩ B ∩ C với:
a) A = [1 ; 4], B = (2; 6), C = (1; 2);
b) A = [ 0; 4], B = (1; 5), C = (–3; 1];
c) A = ( –5; 1], B = [3; +∞), C = ( –∞; – 2).
Tìm một số biết rằng gấp số đó lên 2,5 lần rồi trừ đi 1,6 thì được 5,4
Cho tam giác ABC cân tại A, M trung điểm BC, H là hình chiếu của M trên AC, E là trung điểm MH . Chứng minh AE vuông góc với BH
Xác định a, b, c biết parabol y = ax2 + bx + c đi qua điểm A (8; 0) và có đỉnh là I (6; −12).