Thứ sáu, 15/11/2024
IMG-LOGO

Câu hỏi:

01/07/2024 44

Cho ∆ABC vuông tại A; AB = 3; AC = 4. Giải ∆ABC. Gọi I là trung điểm của BC, vẽ AH BC. Tính \(\widehat B,\,\widehat C\) AH; AI.

Trả lời:

verified Giải bởi Vietjack

Lời giải:

Media VietJack

Ta có ∆ABC vuông tại A \( \Rightarrow BC = \sqrt {A{B^2} + A{C^2}} = \sqrt {{3^2} + {4^2}} = 5\)

\(\sin \widehat B = \frac{{AC}}{{BC}} = \frac{4}{5} \Rightarrow \widehat B = 53,13^\circ \Rightarrow \widehat C = 90^\circ - 53,13^\circ \approx 36,87^\circ \)

Lại có: AH.BC = AB.AC \( \Leftrightarrow AH = \frac{{AB.AC}}{{BC}} = \frac{{3.4}}{5} = 2,4\)

∆ABC có \(\widehat A = 90^\circ ;IB = IC \Rightarrow AI = \frac{1}{2}BC\) (Tính chất trong tam giác vuông đường trung tuyến ứng với cạnh huyền bằng \(\frac{1}{2}\) cạnh huyền) AI = 2,5.

Câu trả lời này có hữu ích không?

0

CÂU HỎI HOT CÙNG CHỦ ĐỀ

Câu 1:

Cho hình chóp S.ABC có SA (ABC) và AB BC. Xác định góc giữa hai mặt phẳng (SBC) và (ABC).

Xem đáp án » 17/07/2023 599

Câu 2:

Cho hình thang cân ABCD (AB // CD, AB < CD). Gọi O là giao điểm của AD và BC; gọi E là giao điểm của AC và BD. Chứng minh:

a) ∆AOB cân tại O.

b) ∆ABD = ∆BAC.

c) EC = ED.

d) OE là đường trung trực chung của AB và CD.

Xem đáp án » 17/07/2023 163

Câu 3:

Cho ∆ABC, M là trung điểm của BC. Trên tia đối của tia MA lấy điểm E sao cho ME = MA. Chứng minh rằng:

a. AC = EB và AC // BE.

b. Gọi I là một điểm trên AC, K là một điểm trên EB sao cho: AI = EK. Chứng minh: I, M, K  thẳng hàng.

c. Từ E kẻ EH  BC (H  BC). Biết \(\widehat {HBE}\)= 50\(^\circ \), \(\widehat {MEB}\) = 25\(^\circ \), tính \(\widehat {HEM}\) \(\widehat {BME}\).

Xem đáp án » 17/07/2023 135

Câu 4:

Cho ∆ABC vuông tại A, có phân giác AD.

Chứng minh rằng: \(\frac{1}{{AB}} + \frac{1}{{AC}} = \frac{{\sqrt 2 }}{{AD}}\).

Xem đáp án » 17/07/2023 135

Câu 5:

Viết phương trình đường thẳng d trong các trường hợp sau:

a. d đi qua M(–2; 5) và vuông góc với \({d_1}:y = - \frac{1}{2}x + 2\).

b. d // \({d_1}:y = - 3x + 4\) và đi qua giao của 2 đường thẳng\({d_2}:y = 2x - 3;{d_3}:y = 3x - \frac{7}{2}\).

Xem đáp án » 17/07/2023 134

Câu 6:

Cho nửa đường tròn đường kính AB = 2R. Từ A và B kẻ hai tiếp tuyến Ax, By. Qua điểm M thuộc nửa đường tròn kẻ tiếp tuyến thứ ba cắt các tiếp tuyến Ax, By lần lượt ở C và D Các đường thẳng AD và BC cắt nhau tại N. Chứng minh AB là tiếp tuyến của đường tròn đường kính CD.

Xem đáp án » 17/07/2023 130

Câu 7:

Cho đường tròn (O), đường kính AB = 2R, dây MN vuông góc với dây AB tại I sao cho IA < IB. Trên đoạn MI lấy điểm E (E ≠ M, I). Tia AE cắt đường tròn tại điểm thứ hai là K.

a. Chứng minh tứ giác IEKB nội tiếp.

b. Chứng minh ∆AME, AKM đồng dạng với nhau và \(A{M^2} = AE.AK\).

c. Chứng minh: \(AE.AK + BI.BA = 4{R^2}\).

d. Xác định vị trí điểm I sao cho chu vi ∆MIO đạt GTLN.

Xem đáp án » 17/07/2023 107

Câu 8:

Cho góc nhọn a có \(\sin a = \frac{5}{{13}}\). Tính cosa, tana, cota.

Xem đáp án » 17/07/2023 107

Câu 9:

Cho ∆ABC cân tại A có BD và CE là hai đường trung tuyến của tam giác. Chứng minh tứ giác BCDE là hình thang cân.

Xem đáp án » 17/07/2023 107

Câu 10:

Cho \(\cos a = \frac{5}{{13}};\frac{{3\pi }}{2} < a < 2\pi \). Tính giá trị của sina; tana; cota.

Xem đáp án » 17/07/2023 103

Câu 11:

∆ABC có diện tích S = 2R2. sin B.sinC, với R là độ dài bán kính đường tròn ngoại tiếp của tam giác. Số đo \(\widehat A\)  bằng bao nhiêu?

Xem đáp án » 17/07/2023 95

Câu 12:

Cho \(\sin a + \cos a = \frac{5}{4}\). Khi đó sina.cosa có giá trị bằng bao nhiêu?

Xem đáp án » 17/07/2023 82

Câu 13:

Tính tổng các nghiệm trong đoạn [0; 30] của phương trình tanx = tan3x (1)

Xem đáp án » 17/07/2023 82

Câu 14:

Cho ∆ABC vuông tại C, có BC = 1,2 cm, CA = 0,9 cm. Tính các tỉ số lượng giác của \(\widehat A\), từ đó suy ra các tỉ số lượng giác của \(\widehat B\).

Xem đáp án » 17/07/2023 79

Câu 15:

Tìm thương của phép chia, biết rằng nếu thêm 15 vào số bị chia và thêm 5 vào số chia thì thương và số dư không thay đổi.

Xem đáp án » 17/07/2023 78

Câu hỏi mới nhất

Xem thêm »
Xem thêm »