Lời giải
Xét ΔABC, ta có: \(\widehat A = 90^\circ ,\widehat B = 30^\circ \)
Suy ra \(\widehat C = 180^\circ - \widehat A - \widehat B = 180^\circ - 90^\circ - 30^\circ = 60^\circ \)
Trên cạnh BC lấy điểm D sao cho CD = AC
Suy ra ΔACD cân tại C
Mà \(\widehat C = 60^\circ \), suy ra ΔACD đều
Do đó AC = AD = DC và \({\widehat A_1} = 60^\circ \)
Ta có \({\widehat A_1} + {\widehat A_2} = \widehat {BAC} = 90^\circ \)
Suy ra \({\widehat A_2} = 90 - {\widehat A_1} = 90^\circ - 60^\circ = 30^\circ \)
Xét tam giác ABD có \({\widehat A_2} = \widehat B\left( { = 30^\circ } \right)\)
Suy ra ΔADB cân tại D nên AD = DB
Suy ra AC = CD = DB mà CD + DB = BC
Do đó \(AC = \frac{1}{2}BC\)
Vậy \(AC = \frac{1}{2}BC\).
Cho tam giác abc vuông tại A, M là trung điểm của BC, D, E lần lượt là hình chiếu của M trên AB và AC.
a) Tứ giác ADME là hình gì, tại sao?
b) Chứng minh \(DE = \frac{1}{2}BC\)
c) Gọi P là trung điểm của BM, Q là trung điểm của MC, chứng minh tứ giác DPQE là hình bình hành.
Từ đó chứng minh: tâm đối xứng của hình bình hành DPQE nằm trên đoạn AM.
d) Tam giác vuông ABC ban đầu cần thêm điều kiện gì để hình bình hành DPQE là hình chữ nhật?
Cho tam giác ABC vuông tại A có AB = 6 cm, AC = 8 cm.
a) Tính số đo góc B, góc C (làm tròn đến độ) và đường cao AH.
b) Chứng minh rằng AB. cos B + AC . cosC = BC.
c) Trên cạnh AC lấy điểm D sao cho DC = 2DA. Vẽ DE vuông góc với BC tại E. Chứng minh rằng \(\frac{1}{{A{B^2}}} + \frac{1}{{A{C^2}}} = \frac{4}{{9D{E^2}}}\).
Cho điểm A nằm ngoài đường tròn (O; R). Từ A vẽ các tiếp tuyến AB, AC và cát tuyến ADE đến đường tròn (O). Gọi H là trung điểm của DE.
a) Chứng minh 5 điểm A, B, H, O, C cùng nằm trên một đường tròn.
b) Chứng minh HA là tia phân giác của góc BHC.
Cho tam giác ABC đều cạnh a, đường cao AH. Tính độ dài của các vecto:
\(\left| {\overrightarrow {AB} + \overrightarrow {BH} } \right|,\left| {\overrightarrow {AB} - \overrightarrow {AC} } \right|,\left| {\overrightarrow {AB} + \overrightarrow {AC} } \right|\).
Cho tam giác ABC đều cạnh a, tâm O. Hãy tính:
a) \(\overrightarrow {AB} .\overrightarrow {AC} \).
b) \(\overrightarrow {AB} .\overrightarrow {BC} \).
c) \(\left( {\overrightarrow {OB} + \overrightarrow {OC} } \right)\left( {\overrightarrow {AB} - \overrightarrow {AC} } \right)\).
d) \(\left( {\overrightarrow {AB} + 2\overrightarrow {AC} } \right)\left( {\overrightarrow {AB} - 3\overrightarrow {BC} } \right)\).
Cho hàm số y = ax – 4 . Tìm hệ số a, biết rằng
a) Đồ thị hàm số cắt đường thẳng y = 2x – 1 tại điểm có hoành độ bằng 2;
b) Đồ thị hàm số cắt đường thẳng y = –3x + 2 tại điểm có tung độ bằng 5.
Cho tam giác ABC điểm M nằm trong tam giác. Gọi D, E, F lần lượt là trung điểm các cạnh BC, CA, AB. Gọi A’, B’, C’ thứ tự là điểm đối xứng của M qua D, E, F
a) Chứng minh tứ giác AB’A’B là hình bình hành.
b) Gọi O là giao điểm của AA’ và BB’, chứng minh C và C’ đối xứng nhau qua điểm O.