Cho tam giác ABC nhọn, vẽ đường tròn (O) đường kính BC cắt AB, AC lần lượt tại F và E. CF cắt BE tại H.
a) Chứng minh tứ giác AEHF nội tiếp.
b) Gọi I là tâm đường tròn ngoại tiếp tứ giác AEHF. Tính số đo cung EHF, diện tích hình quạt IEHF của đường tròn (I) nếu \(\widehat {BAC} = 60^\circ \), AH = 4 cm.
c) AH giao BC tại D. Chứng minh FH là tia phân giác của \(\widehat {DFE}\).
d) Chứng minh 2 tiếp tuyến của (O) tại E, F và AH đồng quy tại một điểm.
Lời giải
a) ∆BCF nội tiếp đường tròn tâm O, đường kính BC.
Suy ra \(\widehat {BFC}\) là góc nội tiếp chắn nửa đường tròn đường kính BC.
Khi đó \(\widehat {BFC} = 90^\circ \) hay \(\widehat {AFH} = 90^\circ \).
Vì vậy ba điểm A, F, H cùng thuộc đường tròn đường kính AH (1)
Chứng minh tương tự, ta được \(\widehat {AEH} = 90^\circ \).
Suy ra ba điểm A, E, H cùng thuộc đường tròn đường kính AH (2)
Từ (1), (2), ta được tứ giác AEHF nội tiếp đường tròn đường kính AH.
b) Ta có \(\widehat {FIE} = 2\widehat {FAE} = 2.60^\circ = 120^\circ \) (góc nội tiếp bằng một nửa số đo của của bị chắn).
Suy ra .
Ta có I là tâm đường tròn ngoại tiếp tứ giác AEHF (giả thiết).
Suy ra I là trung điểm AH.
Do đó \(IA = IH = \frac{{AH}}{2} = \frac{4}{2} = 2\,\,\left( {cm} \right)\).
Diện tích hình quạt IEHF của đường tròn (I) là:
\(S = \frac{{\pi .I{A^2}.n^\circ }}{{360^\circ }} = \frac{{\pi {{.2}^2}.120^\circ }}{{360^\circ }} = \frac{{4\pi }}{3}\,\,\,\left( {c{m^2}} \right)\).
Vậy sđ và diện tích hình quạt IEHF của đường tròn (I) bằng \(\frac{{4\pi }}{3}\,\,c{m^2}\).
c) ∆ABC có hai đường cao CF và BE cắt nhau tại H.
Suy ra H là trực tâm của ∆ABC.
Mà AH cắt BC tại D.
Do đó AD ⊥ BC.
Suy ra \(\widehat {HDB} = 90^\circ \).
Khi đó ba điểm B, D, H cùng thuộc đường tròn đường kính BH (3)
Lại có \(\widehat {BFH} = 90^\circ \) (chứng minh trên).
Suy ra ba điểm B, F, H cùng thuộc đường tròn đường kính BH (4)
Từ (3), (4), suy ra tứ giác BDHF nội tiếp đường tròn đường kính BH.
Do đó \(\widehat {HFD} = \widehat {HBD}\) (cùng chắn ) (*)
Ta có tứ giác AEHF nội tiếp đường tròn đường kính AH (chứng minh trên).
Suy ra \(\widehat {EFH} = \widehat {EAH}\) (cùng chắn ) (**)
Ta có \(\widehat {EBC} = \widehat {CAD}\) (cùng phụ với \(\widehat {ACB}\)) (***)
Từ (*), (**), (***), suy ra \(\widehat {HFD} = \widehat {EFH}\).
Vậy FH là tia phân giác của \(\widehat {DFE}\).
d) Ta có tứ giác AEHF nội tiếp đường tròn đường kính AH (chứng minh trên).
Suy ra IE = IH.
Do đó ∆IEH cân tại I.
Vì vậy \(\widehat {IEH} = \widehat {IHE}\) (5)
Lại có \(\widehat {BHD} = \widehat {IHE}\) (cặp góc đối đỉnh) (6)
Mà \(\widehat {BHD} = \widehat {ECO}\) (cùng phụ với \(\widehat {ABC}\)) (7)
Ta có tứ giác BCEF nội tiếp đường tròn tâm O, đường kính BC (giả thiết).
Suy ra OE = OC.
Do đó ∆OEC cân tại O.
Vì vậy \(\widehat {ECO} = \widehat {OEC}\) (8)
Từ (5), (6), (7), (8), suy ra \(\widehat {IEH} = \widehat {OEC}\).
Mà \(\widehat {OEH} + \widehat {OEC} = 90^\circ \) (do BE ⊥ AC).
Suy ra \(\widehat {OEH} + \widehat {IEH} = 90^\circ \).
Do đó \(\widehat {IEO} = 90^\circ \).
Vì vậy OE ⊥ EI.
Suy ra IE là tiếp tuyến của (O).
Chứng minh tương tự, ta được IF là tiếp tuyến của (O).
Mà I ∈ AH.
Vậy 2 tiếp tuyến của (O) tại E, F và AH đồng quy tại điểm I.
Cho tam giác ABC nhọn. Vẽ đường tròn tâm O đường kính BC cắt AB, AC theo thứ tự tại D và E.
a) Chứng minh CD vuông góc với AB, BE vuông góc với AC.
b) Gọi K là giao điểm của BE và CD. Chứng minh AK vuông góc với BC.
Cho tam giác ABC có AB = AC. Gọi D là trung điểm của cạnh BC.
a) Chứng minh rằng ∆ABD = ∆ACD và AD là tia phân giác của \(\widehat {BAC}\).
b) Vẽ DM vuông góc với AB tại M. Trên cạnh AC lấy điểm N sao cho AN = AM. Chứng minh ∆ADM = ∆ADN và DN vuông góc AC.
c) Gọi K là trung điểm của đoạn thẳng CN. Trên tia đối của tia KD lấy điểm E sao cho KE = KD. Chứng minh M, E, N thẳng hàng.
Cho tam giác ABC có AB = AC, gọi D là trung điểm của BC. Chứng minh:
a) ∆ADB = ∆ADC.
b) AD là tia phân giác của \(\widehat {BAC}\) và \(\widehat B = \widehat C\).
c) AD vuông góc với BC.
a) Cho biểu thức \[A = \frac{{\sqrt x - 1}}{{\sqrt x + 2}}\] với x ≥ 0. Tính giá trị của A khi x = 16.
b) Cho biểu thức \(B = \frac{{\sqrt x + 3}}{{\sqrt x + 1}} - \frac{5}{{1 - \sqrt x }} + \frac{4}{{x - 1}}\) với x ≥ 0; x ≠ 1. Rút gọn B.
c) Tìm các số hữu tỉ x để P = A.B có giá trị nguyên.
Cho tam giác ABC. Hãy tìm các điểm M thỏa các điều kiện:
a) \(\overrightarrow {MA} - \overrightarrow {MB} = \overrightarrow {BA} \).
b) \(\overrightarrow {MA} - \overrightarrow {MB} = \overrightarrow {AB} \).
c) \(\overrightarrow {MA} - \overrightarrow {MB} + \overrightarrow {MC} = \overrightarrow {BA} \).
d) \(\left| {\overrightarrow {MA} - \overrightarrow {CA} } \right| = \left| {\overrightarrow {AC} - \overrightarrow {AB} } \right|\).
Cho hai điểm phân biệt A và B. Tìm điểm M thỏa mãn một trong các điều kiện sau:
a) \(\overrightarrow {MA} - \overrightarrow {MB} = \overrightarrow {BA} \).
b) \(\overrightarrow {MA} - \overrightarrow {MB} = \overrightarrow {AB} \).
c) \(\overrightarrow {MA} + \overrightarrow {MB} = \overrightarrow 0 \).