Lời giải
Gọi số cần tìm là \(n = \overline {{a_1}{a_2}{a_3}{a_4}{a_5}{a_6}} \), với 1 ≤ a1 ≤ 5 và a6 lẻ.
Đặt X = {0; 1; 2; 3; 4; 5; 6; 7; 8; 9}.
Trường hợp 1: a1 lẻ.
Do a1 ∈ {1; 3; 5} nên a1 có 3 cách chọn.
Do a6 ∈ {1; 3; 5; 7; 9} và bỏ đi {a1} nên a6 có 4 cách chọn.
Do a2 ∈ X và bỏ đi {a1, a6} nên a2 có 8 cách chọn.
Do a3 ∈ X và bỏ đi {a1, a6, a2} nên a3 có 7 cách chọn.
Do a4 ∈ X và bỏ đi {a1, a6, a2, a3} nên a4 có 6 cách chọn.
Do a5 ∈ X và bỏ đi {a1, a6, a2, a3, a4} nên a5 có 5 cách chọn.
Áp dụng quy tắc nhân, ta có 3.4.8.7.6.5 = 20160 số tự nhiên thỏa mãn trường hợp 1.
Trường hợp 2: a1 chẵn.
Do a1 ∈ {2; 4} nên a1 có 2 cách chọn.
Do a6 ∈ {1; 3; 5; 7; 9} nên a6 có 5 cách chọn.
Do a2 ∈ X và bỏ đi {a1, a6} nên a2 có 8 cách chọn.
Do a3 ∈ X và bỏ đi {a1, a6, a2} nên a3 có 7 cách chọn.
Do a4 ∈ X và bỏ đi {a1, a6, a2, a3} nên a4 có 6 cách chọn.
Do a5 ∈ X và bỏ đi {a1, a6, a2, a3, a4} nên a5 có 5 cách chọn.
Áp dụng quy tắc nhân, ta có 2.5.8.7.6.5 = 16800 số tự nhiên thỏa mãn trường hợp 2.
Vậy theo quy tắc cộng, ta có tất cả 20160 + 16800 = 36960 số tự nhiên thỏa mãn yêu cầu bài toán.
Cho tam giác ABC nhọn, vẽ đường tròn (O) đường kính BC cắt AB, AC lần lượt tại F và E. CF cắt BE tại H.
a) Chứng minh tứ giác AEHF nội tiếp.
b) Gọi I là tâm đường tròn ngoại tiếp tứ giác AEHF. Tính số đo cung EHF, diện tích hình quạt IEHF của đường tròn (I) nếu \(\widehat {BAC} = 60^\circ \), AH = 4 cm.
c) AH giao BC tại D. Chứng minh FH là tia phân giác của \(\widehat {DFE}\).
d) Chứng minh 2 tiếp tuyến của (O) tại E, F và AH đồng quy tại một điểm.
Cho tam giác ABC nhọn. Vẽ đường tròn tâm O đường kính BC cắt AB, AC theo thứ tự tại D và E.
a) Chứng minh CD vuông góc với AB, BE vuông góc với AC.
b) Gọi K là giao điểm của BE và CD. Chứng minh AK vuông góc với BC.
Cho tam giác ABC có AB = AC. Gọi D là trung điểm của cạnh BC.
a) Chứng minh rằng ∆ABD = ∆ACD và AD là tia phân giác của \(\widehat {BAC}\).
b) Vẽ DM vuông góc với AB tại M. Trên cạnh AC lấy điểm N sao cho AN = AM. Chứng minh ∆ADM = ∆ADN và DN vuông góc AC.
c) Gọi K là trung điểm của đoạn thẳng CN. Trên tia đối của tia KD lấy điểm E sao cho KE = KD. Chứng minh M, E, N thẳng hàng.
Cho tam giác ABC có AB = AC, gọi D là trung điểm của BC. Chứng minh:
a) ∆ADB = ∆ADC.
b) AD là tia phân giác của \(\widehat {BAC}\) và \(\widehat B = \widehat C\).
c) AD vuông góc với BC.
a) Cho biểu thức \[A = \frac{{\sqrt x - 1}}{{\sqrt x + 2}}\] với x ≥ 0. Tính giá trị của A khi x = 16.
b) Cho biểu thức \(B = \frac{{\sqrt x + 3}}{{\sqrt x + 1}} - \frac{5}{{1 - \sqrt x }} + \frac{4}{{x - 1}}\) với x ≥ 0; x ≠ 1. Rút gọn B.
c) Tìm các số hữu tỉ x để P = A.B có giá trị nguyên.
Cho hai điểm phân biệt A và B. Tìm điểm M thỏa mãn một trong các điều kiện sau:
a) \(\overrightarrow {MA} - \overrightarrow {MB} = \overrightarrow {BA} \).
b) \(\overrightarrow {MA} - \overrightarrow {MB} = \overrightarrow {AB} \).
c) \(\overrightarrow {MA} + \overrightarrow {MB} = \overrightarrow 0 \).
Cho tam giác ABC. Hãy tìm các điểm M thỏa các điều kiện:
a) \(\overrightarrow {MA} - \overrightarrow {MB} = \overrightarrow {BA} \).
b) \(\overrightarrow {MA} - \overrightarrow {MB} = \overrightarrow {AB} \).
c) \(\overrightarrow {MA} - \overrightarrow {MB} + \overrightarrow {MC} = \overrightarrow {BA} \).
d) \(\left| {\overrightarrow {MA} - \overrightarrow {CA} } \right| = \left| {\overrightarrow {AC} - \overrightarrow {AB} } \right|\).