Thứ sáu, 15/11/2024
IMG-LOGO

Câu hỏi:

03/07/2024 64

Cho hình chóp S.ABCD có đáy ABCD là hình bình hành. Gọi O là giao điểm của AC và BD. Gọi M, N lần lượt là trung điểm của SB, SC. Tính tỉ số thể tích giữa hai khối chóp O.BCNM và S.ABCD.

Trả lời:

verified Giải bởi Vietjack

Cho hình chóp S.ABCD có đáy ABCD là hình bình hành. Gọi O là giao điểm  (ảnh 1)

Ta có \(\frac{{d\left( {O,\left( {BCNM} \right)} \right)}}{{d\left( {A,\left( {BCNM} \right)} \right)}} = \frac{{CO}}{{CA}} = \frac{1}{2}\) (do O là trung điểm AC).

\( \Rightarrow d\left( {O,\left( {BCNM} \right)} \right) = \frac{1}{2}d\left( {A,\left( {BCNM} \right)} \right)\).

Lại có \({S_{SMN}} = \frac{1}{2}SM.SN.\sin \widehat {MSN} = \frac{1}{8}SB.SC.\sin \widehat {MSN} = \frac{1}{4}{S_{SBC}}\).

Suy ra \({S_{BCNM}} = {S_{SBC}} - {S_{SMN}} = {S_{SBC}} - \frac{1}{4}{S_{SBC}} = \frac{3}{4}{S_{SBC}}\).

Ta có \({S_{ABC}} = \frac{1}{2}d\left( {A,CD} \right).CD\) và SABCD = d(A, CD).CD.

Suy ra \({S_{ABC}} = \frac{1}{2}{S_{ABCD}}\).

Vì vậy \({V_{O.BCNM}} = \frac{1}{3}d\left( {O,\left( {BCNM} \right)} \right).{S_{BCNM}} = \frac{1}{3}.\frac{1}{2}d\left( {A,\left( {BCNM} \right)} \right).\frac{3}{4}{S_{SBC}}\).

\( = \frac{3}{8}{V_{SABC}} = \frac{3}{8}.\frac{1}{3}d\left( {S,\left( {ABC} \right)} \right).{S_{ABC}} = \frac{3}{8}.\frac{1}{3}d\left( {S,\left( {ABCD} \right)} \right).\frac{1}{2}{S_{ABCD}} = \frac{3}{{16}}{V_{S.ABCD}}\).

Suy ra \(\frac{{{V_{O.BCNM}}}}{{{V_{S.ABCD}}}} = \frac{3}{{16}}\).

Vậy tỉ số thể tích giữa hai khối chóp O.BCNM và S.ABCD là \(\frac{3}{{16}}\).

Câu trả lời này có hữu ích không?

0

CÂU HỎI HOT CÙNG CHỦ ĐỀ

Câu 1:

Cho (O; R), đường kính AB và một điểm M nằm trên (O; R) với MA < MB (M khác A và B). Tiếp tuyến tại M của (O; R) cắt tiếp tuyến tại A, B của (O; R) lần lượt tại C và D.

a) Chứng minh rằng ABDC là hình thang vuông.

b) AD cắt (O; R) tại E, OD cắt MB tại N. Chứng minh rằng OD vuông góc với MB và DE.DA = DN.DO.

c) Đường thẳng vuông góc với AB tại O cắt đường thẳng AM tại F. Chứng tỏ OFDB là hình chữ nhật.

d) AM = R. Tính diện tích tứ giác ACDB theo R.

Xem đáp án » 30/07/2023 104

Câu 2:

Cho hình chữ nhật ABCD có AB = 4 cm, BC = 3 cm. Kẻ BH vuông góc với AC tại H, tia BH cắt AD ở E.

1) Tính AC, BH, \(\widehat {BAC}\).

2) Chứng minh BH.BE = CD2.

3) Kẻ EF vuông góc với BC tại F. Chứng minh .

4) Tính diện tích tam giác BHF.

Xem đáp án » 30/07/2023 99

Câu 3:

Mẹ hơn con 30 tuổi, tuổi mẹ gấp 6 lần tuổi con. Hỏi tuổi của mỗi người?

Xem đáp án » 30/07/2023 92

Câu 4:

Cho \(\cos a = \frac{4}{5}\) và 0° < a < 90°. Tính sina, tana, cota.

Xem đáp án » 30/07/2023 82

Câu 5:

Tìm tất cả các nghiệm nguyên dương của phương trình 6x2 + 5y2 = 74.

Xem đáp án » 30/07/2023 76

Câu 6:

Cho tam giác ABC đều cạnh bằng a, M là điểm di động trên đường thẳng AC. Tìm giá trị nhỏ nhất của biểu thức \(T = \left| {\overrightarrow {MA} + \overrightarrow {MB} + \overrightarrow {MC} } \right| + 3\left| {\overrightarrow {MA} - \overrightarrow {MB} + \overrightarrow {MC} } \right|\).

Xem đáp án » 30/07/2023 75

Câu 7:

Cho tam giác ABC vuông tại A, AB = 3 và AC = 4. Gọi I là tâm đường tròn nội tiếp của tam giác ABC. Chứng minh rằng \(5\overrightarrow {IA} + 4\overrightarrow {IB} + 3\overrightarrow {IC} = \vec 0\).

Xem đáp án » 30/07/2023 71

Câu 8:

Với các số 0, 1, 3, 6, 9, có thể lập được bao nhiêu số tự nhiên có 4 chữ số khác nhau và không chia hết cho 3.

Xem đáp án » 30/07/2023 71

Câu 9:

Cho x, y, z là các số thực dương thỏa mãn x + y + z = xyz. Tìm giá trị lớn nhất của biểu thức \(P = \frac{1}{{\sqrt {1 + {x^2}} }} + \frac{1}{{\sqrt {1 + {y^2}} }} + \frac{1}{{\sqrt {1 + {z^2}} }}\).

Xem đáp án » 30/07/2023 68

Câu 10:

Có bao nhiêu số tự nhiên có 5 chữ số khác nhau, biết rằng có đúng 3 chữ số chẵn và 2 chữ số lẻ còn lại đứng kề nhau?

Xem đáp án » 30/07/2023 67

Câu 11:

Tìm số tự nhiên x có 3 chữ số, biết rằng nếu viết thêm chữ số 9 vào bên trái số đó ta được một số gấp 26 lần số ban đầu.

Xem đáp án » 30/07/2023 66

Câu 12:

Tìm các số nguyên x để giá trị của đa thức a(x) = x3 – 2x2 + 3x + 50 chia hết cho giá trị của đa thức b(x) = x + 3.

Xem đáp án » 30/07/2023 65

Câu 13:

Cho đường thẳng d: y = –4x + 3.

a) Vẽ đồ thị hàm số.

b) Tìm tọa độ giao điểm A, B của d với lần lượt hai trục tọa độ Ox và Oy.

c) Tính khoảng cách từ gốc tọa độ đến d.

d) Tính diện tích tam giác OAB.

Xem đáp án » 30/07/2023 65

Câu 14:

Cho a, b, c là các số hữu tỉ khác 0 thỏa mãn a + b + c = 0. Chứng minh rằng: \(\frac{1}{{{a^2}}} + \frac{1}{{{b^2}}} + \frac{1}{{{c^2}}}\) là bình phương của một số hữu tỉ.

Xem đáp án » 30/07/2023 60

Câu 15:

Cho hàm số bậc nhất y = (m – 1)x + 4. Tìm m để đồ thị hàm số cắt 2 trục tọa độ tại hai điểm A, B phân biệt thỏa mãn diện tích tam giác AOB bằng 24.

Xem đáp án » 30/07/2023 59

Câu hỏi mới nhất

Xem thêm »
Xem thêm »