Tính giá trị của mỗi biểu thức sau:
a) \(A = {x^2} + xy + \frac{{{y^2}}}{4}\) biết \(x + \frac{y}{2} = 100\).
b) B = 25x2z ‒ 10xyz + y2z biết 5x ‒ y = ‒20 và z = ‒5.
c) C = x3yz + 3x2y2z + 3xy3z + y4z biết x + y = ‒0,5 và yz = 8.
Lời giải
a) Ta có: \(A = {x^2} + xy + \frac{{{y^2}}}{4} = {x^2} + 2 \cdot x \cdot \frac{y}{2} + {\left( {\frac{y}{2}} \right)^2} = {\left( {x + \frac{y}{2}} \right)^2}\).
Thay \(x + \frac{y}{2} = 100\) vào biểu thức trên ta có: A = 1002 = 10 000.
b) Ta có: B = 25x2z ‒ 10xyz + y2z
= z(25x2 ‒ 10xy + y2)
= z[(5x)2 ‒ 2.5x.y + y2)]
= z(5x ‒ y)2.
Thay 5x ‒ y = ‒20 và z = ‒5 vào biểu thức trên ta có:
B = ‒5.(‒20)2 = –5.400 = ‒2 000.
c) Ta có: C = x3yz + 3x2y2z + 3xy3z + y4z
= yz(x3 + 3x2y + 3xy2 + y3)
= yz(x + y)3.
Thay x + y = ‒0,5 và yz = 8 vào biểu thức trên ta có:
\[C = 8.{\left( { - 0,5} \right)^3} = 8.{\left( { - \frac{1}{2}} \right)^3} = 8.\left( { - \frac{1}{8}} \right) = - 1.\]
Phân tích mỗi đa thức sau thành nhân tử:
a) x3(13xy ‒ 5) ‒ y3(5 ‒ 13xy);
b) 8x3yz + 12x2yz + 6xyz + yz.
Phân tích mỗi đa thức sau thành nhân tử:
a) \(25{x^2} - \frac{1}{4}\);
b) 36x2 + 12xy + y2;
c) \(\frac{{{x^3}}}{2} + 4\);
d) 27y3 + 27y2 + 9y + 1.
Cho tam giác ABC có cạnh BC = 2x (dm), đường cao AH = x (dm) với x > 0 và hình vuông MNPQ có cạnh MN = y (dm) với y > 0 (Hình 4).
=
a) Viết công thức tính tổng diện tích của các tam giác AMN, BMQ, CNP dưới dạng tích.
b) Tính tổng diện tích của các tam giác AMN, BMQ, CNP, biết x ‒ y = 2 và x + y = 10.